In this paper, we introduce a novel concept of user-entity differential privacy (UeDP) to provide formal privacy protection simultaneously to both sensitive entities in textual data and data owners in learning natural language models (NLMs). To preserve UeDP, we developed a novel algorithm, called UeDP-Alg, optimizing the trade-off between privacy loss and model utility with a tight sensitivity bound derived from seamlessly combining user and sensitive entity sampling processes. An extensive theoretical analysis and evaluation show that our UeDP-Alg outperforms baseline approaches in model utility under the same privacy budget consumption on several NLM tasks, using benchmark datasets.
translated by 谷歌翻译
随着语言模型的不断增加,它对于保护这些模型免于泄漏私人信息变得至关重要。以前的工作试图通过培训具有不同隐私保证的基于RNN的语言模型来应对这一挑战。但是,将经典的差异隐私应用于语言模型会导致模型性能差,因为基本隐私概念过于困惑,并且为数据中所有令牌提供了不体化的保护。鉴于自然语言中的私人信息很少(例如,电子邮件的大部分可能无法携带个人身份信息),我们提出了一个新的隐私概念,选择性差异隐私,以提供严格的数据,以保证数据的敏感部分改善模型实用程序。为了实现这样一个新的概念,我们为基于RNN的语言模型开发了相应的隐私机制,即选择性DPSGD。除了语言建模外,我们还将方法应用于更具体的应用程序 - dialog系统。语言建模和对话系统建设的实验表明,与基线相比,在各种隐私攻击下,提议的保留隐私机制可以实现更好的公用事业,同时保持安全。数据和代码在https://github.com/wyshi/lm_privacy上发布,以促进未来的研究。
translated by 谷歌翻译
We demonstrate that it is possible to train large recurrent language models with user-level differential privacy guarantees with only a negligible cost in predictive accuracy. Our work builds on recent advances in the training of deep networks on user-partitioned data and privacy accounting for stochastic gradient descent. In particular, we add user-level privacy protection to the federated averaging algorithm, which makes "large step" updates from user-level data. Our work demonstrates that given a dataset with a sufficiently large number of users (a requirement easily met by even small internet-scale datasets), achieving differential privacy comes at the cost of increased computation, rather than in decreased utility as in most prior work. We find that our private LSTM language models are quantitatively and qualitatively similar to un-noised models when trained on a large dataset.
translated by 谷歌翻译
在本文中,我们表明,不断学习新任务和记住先前任务的过程引入了未知的隐私风险和挑战以限制隐私损失。基于此,我们介绍了终身DP的正式定义,其中任何数据元组在任何任务的训练集中都受到保护,在始终界限的DP保护下,鉴于越来越多的任务流。始终如一的DP意味着只有一个固定值的DP隐私预算,而不管任务的数量多少。为了保留终身DP,我们提出了一种可扩展和异质的算法,称为L2DP-ML和流批培训,以有效地训练并继续释放L2M型号的新版本,鉴于数据大小和任务训练顺序, ,不影响DP保护私人培训集。端到端的理论分析和彻底的评估表明,我们的机制明显好于保存终身DP的基线方法。 L2DP-ML的实现可在以下网址获得:https://github.com/haiphannjit/privatedeeplearning。
translated by 谷歌翻译
Privacy preserving deep learning is an emerging field in machine learning that aims to mitigate the privacy risks in the use of deep neural networks. One such risk is training data extraction from language models that have been trained on datasets , which contain personal and privacy sensitive information. In our study, we investigate the extent of named entity memorization in fine-tuned BERT models. We use single-label text classification as representative downstream task and employ three different fine-tuning setups in our experiments, including one with Differentially Privacy (DP). We create a large number of text samples from the fine-tuned BERT models utilizing a custom sequential sampling strategy with two prompting strategies. We search in these samples for named entities and check if they are also present in the fine-tuning datasets. We experiment with two benchmark datasets in the domains of emails and blogs. We show that the application of DP has a huge effect on the text generation capabilities of BERT. Furthermore, we show that a fine-tuned BERT does not generate more named entities entities specific to the fine-tuning dataset than a BERT model that is pre-trained only. This suggests that BERT is unlikely to emit personal or privacy sensitive named entities. Overall, our results are important to understand to what extent BERT-based services are prone to training data extraction attacks.
translated by 谷歌翻译
临床NLP任务,例如文本的心理健康评估,必须考虑社会限制 - 绩效最大化必须受保证用户数据隐私的最大重要性来限制。消费者保护法规(例如GDPR)通常通过限制数据可用性来处理隐私,例如要求将用户数据限制为给定目的的“必要内容”。在这项工作中,我们认为提供更严格的正式隐私保证,同时增加模型中用户数据量的同时,在大多数情况下,为所有涉及的各方(尤其是对用户)增加了收益。我们在Twitter和Reddit帖子的两个现有自杀风险评估数据集上演示了我们的论点。我们提出了第一个分析并置用户历史记录长度和差异隐私预算,并详细说明建模其他用户上下文如何实现公用事业保存,同时保持可接受的用户隐私保证。
translated by 谷歌翻译
大型语言模型被显示为记住隐私信息,例如培训数据中的社会保险号。鉴于培训语料库的巨大规模,筛选和自动筛选和过滤这些隐私数据是一项挑战。在本文中,我们提出了秘密编辑的培训(CRT),这是一种培训语言生成模型的方法,同时保护机密细分市场。我们从差异隐私(解决一个相关但独特的问题)中借鉴了想法,并表明我们的方法能够通过随机将培训过程的部分随机化来防止意外的记忆。此外,我们证明了通过近似正确的筛选策略进行修复会放大机密性保证。我们实施LSTM和GPT语言模型的方法。我们的实验结果表明,通过CRT训练的模型获得了几乎相同的困惑,同时保持了强大的机密性。
translated by 谷歌翻译
梯度泄漏攻击被认为是深度学习中的邪恶隐私威胁之一,因为攻击者在迭代培训期间隐蔽了梯度更新,而不会影响模型培训质量,但又使用泄漏的梯度逐步重建敏感培训数据,具有高攻击成功率。虽然具有差异隐私的深度学习是发布具有差异隐私保障的深度学习模型的违法标准,但我们展示了具有固定隐私参数的差异私有算法易受梯度泄漏攻击的影响。本文调查了差异隐私(DP)的梯度泄漏弹性深度学习的替代方法。首先,我们分析了差异隐私的深度学习的现有实现,它使用固定噪声方差使用固定隐私参数将恒定噪声对所有层中的梯度注入恒定噪声。尽管提供了DP保证,但该方法遭受了低精度,并且很容易受到梯度泄漏攻击。其次,通过使用动态隐私参数,我们提出了一种梯度泄漏弹性深度学习方法,差异隐私保证。与导致恒定噪声方差导致的固定参数策略不同,不同的动态参数策略存在替代技术,以引入自适应噪声方差和自适应噪声注入,其与差别私有模型训练期间的梯度更新的趋势紧密对齐。最后,我们描述了四个互补指标来评估和比较替代方法。
translated by 谷歌翻译
从公共机器学习(ML)模型中泄漏数据是一个越来越重要的领域,因为ML的商业和政府应用可以利用多个数据源,可能包括用户和客户的敏感数据。我们对几个方面的当代进步进行了全面的调查,涵盖了非自愿数据泄漏,这对ML模型很自然,潜在的恶毒泄漏是由隐私攻击引起的,以及目前可用的防御机制。我们专注于推理时间泄漏,这是公开可用模型的最可能场景。我们首先在不同的数据,任务和模型体系结构的背景下讨论什么是泄漏。然后,我们提出了跨非自愿和恶意泄漏的分类法,可用的防御措施,然后进行当前可用的评估指标和应用。我们以杰出的挑战和开放性的问题结束,概述了一些有希望的未来研究方向。
translated by 谷歌翻译
Pre-training large transformer models with in-domain data improves domain adaptation and helps gain performance on the domain-specific downstream tasks. However, sharing models pre-trained on potentially sensitive data is prone to adversarial privacy attacks. In this paper, we asked to which extent we can guarantee privacy of pre-training data and, at the same time, achieve better downstream performance on legal tasks without the need of additional labeled data. We extensively experiment with scalable self-supervised learning of transformer models under the formal paradigm of differential privacy and show that under specific training configurations we can improve downstream performance without sacrifying privacy protection for the in-domain data. Our main contribution is utilizing differential privacy for large-scale pre-training of transformer language models in the legal NLP domain, which, to the best of our knowledge, has not been addressed before.
translated by 谷歌翻译
Language models are widely deployed to provide automatic text completion services in user products. However, recent research has revealed that language models (especially large ones) bear considerable risk of memorizing private training data, which is then vulnerable to leakage and extraction by adversaries. In this study, we test the efficacy of a range of privacy-preserving techniques to mitigate unintended memorization of sensitive user text, while varying other factors such as model size and adversarial conditions. We test both "heuristic" mitigations (those without formal privacy guarantees) and Differentially Private training, which provides provable levels of privacy at the cost of some model performance. Our experiments show that (with the exception of L2 regularization), heuristic mitigations are largely ineffective in preventing memorization in our test suite, possibly because they make too strong of assumptions about the characteristics that define "sensitive" or "private" text. In contrast, Differential Privacy reliably prevents memorization in our experiments, despite its computational and model-performance costs.
translated by 谷歌翻译
最近的数据提取攻击暴露了语言模型可以记住一些培训样本逐字。这是一种漏洞,可以损害模型培训数据的隐私。在这项工作中,我们介绍了子句:私人私人下一象征预测的实用协议,旨在防止在公共语料库预训练后在私人语料库中进行微调的语言模型的隐私违规。我们展示子子句通过放松差异私密预测,限制了私人语料库中的任何单独用户所唯一的信息的泄漏。重要的是,子提M允许一个紧张,数据相关的隐私会计机制,它允许它挫败现有的数据提取攻击,同时保持语言模型的效用。子句是即使在公开释放由大型变压器的模型等基于GPT-2的基于大型变换器的模型制作的数千个下一令牌预测,也是第一个维护隐私的协议。
translated by 谷歌翻译
深度神经网络(DNNS)铰接对大型数据集的可用性的最新成功;但是,对此类数据集的培训经常为敏感培训信息构成隐私风险。在本文中,我们的目标是探讨生成模型和梯度稀疏性的力量,并提出了一种可扩展的隐私保留生成模型数据标准。与标准展示隐私保留框架相比,允许教师对一维预测进行投票,在高维梯度向量上投票在隐私保存方面具有挑战性。随着需要尺寸减少技术,我们需要在(1)之间的改进之间导航精致的权衡空间,并进行SGD收敛的放缓。为了解决这一点,我们利用通信高效学习,并通过将顶-K压缩与相应的噪声注入机构相结合,提出一种新的噪声压缩和聚集方法TopAGG。理论上,我们证明了DataLens框架保证了其生成数据的差异隐私,并提供了其收敛性的分析。为了展示DataLens的实际使用情况,我们对不同数据集进行广泛的实验,包括Mnist,Fashion-Mnist和高维Celeba,并且我们表明,DataLens显着优于其他基线DP生成模型。此外,我们改进了所提出的Topagg方法,该方法是DP SGD培训的主要构建块之一,并表明它能够在大多数情况下实现比最先进的DP SGD方法更高的效用案件。我们的代码在HTTPS://github.com/ai-secure/datalens公开提供。
translated by 谷歌翻译
联合学习(FL)提供了一个有效的范式,可以共同培训分布式用户的数据的全球模型。由于本地培训数据来自可能不值得信赖的不同用户,因此一些研究表明,FL容易受到中毒攻击的影响。同时,为了保护本地用户的隐私,FL始终以差异性私人方式(DPFL)进行培训。因此,在本文中,我们问:我们是否可以利用DPFL的先天隐私权来提供对中毒攻击的认证鲁棒性?我们可以进一步改善FL的隐私以改善这种认证吗?我们首先研究了FL的用户级和实例级别的隐私,并提出了新的机制以获得改进的实例级隐私。然后,我们提供两个鲁棒性认证标准:两级DPFL的认证预测和认证攻击成本。从理论上讲,我们证明了DPFL在有限数量的对抗用户或实例下的认证鲁棒性。从经验上讲,我们进行了广泛的实验,以在对不同数据集的一系列攻击下验证我们的理论。我们表明,具有更严格的隐私保证的DPFL总是在认证攻击成本方面提供更强的鲁棒性认证,但是在隐私保护和公用事业损失之间的适当平衡下,获得了最佳认证预测。
translated by 谷歌翻译
当适用于大规模学习问题时,由于与差异性的性能下降和高记忆开销相比,所谓的隐私私人随机梯度下降(DP-SGD)的常规智慧已经满足了有限的成功。非隐私对应。我们展示了如何通过用新型DP正向传播(DP-FP)替换DP-SGD来减轻性能下降,然后是一个离上的非DP优化器。我们的DP-FP采用新的(1)表示剪辑,然后在前向传播阶段进行噪声,以及(2)微批量构建通过分置,以实现DP放大,并将噪声功率降低至1 / m $,其中$ m $是一步中的微批次数量。在培训分类模型时,我们的DP-FP与表示的所有隐私保留操作的DP-FP无天然偏离偏差,总噪声与模型大小,以及DP-SGD中的内存问题。结果,我们的DP-FP优于尖端DP-SGD,同时保持相同的隐私水平,并且它接近非私有基线,显着优于最先进的DP-SGD变体。例如,当在四个下游任务上应用于Roberta-Light时,DP-FP的平均准确性为91.34 \%,隐私预算小于3,代表了最先进的DP的3.81 \%的性能改进 - 与非私有基线相比,SGD和只有0.9 \%的损失,但具有明显降低的隐私泄漏风险。
translated by 谷歌翻译
我们提出了一种新颖的基准和相关的评估指标,用于评估文本匿名方法的性能。文本匿名化定义为编辑文本文档以防止个人信息披露的任务,目前遭受了面向隐私的带注释的文本资源的短缺,因此难以正确评估各种匿名方法提供的隐私保护水平。本文介绍了标签(文本匿名基准),这是一种新的开源注释语料库,以解决此短缺。该语料库包括欧洲人权法院(ECHR)的1,268个英语法院案件,并充满了有关每个文档中出现的个人信息的全面注释,包括其语义类别,标识符类型,机密属性和共同参考关系。与以前的工作相比,TAB语料库旨在超越传统的识别(仅限于检测预定义的语义类别),并且明确标记了这些文本跨越的标记,这些文本应该被掩盖,以掩盖该人的身份受到保护。除了介绍语料库及其注释层外,我们还提出了一套评估指标,这些指标是针对衡量文本匿名性的性能而定制的,无论是在隐私保护和公用事业保护方面。我们通过评估几个基线文本匿名模型的经验性能来说明基准和提议的指标的使用。完整的语料库及其面向隐私的注释准则,评估脚本和基线模型可在以下网址提供:
translated by 谷歌翻译
Distributing machine learning predictors enables the collection of large-scale datasets while leaving sensitive raw data at trustworthy sites. We show that locally training support vector machines (SVMs) and computing their averages leads to a learning technique that is scalable to a large number of users, satisfies differential privacy, and is applicable to non-trivial tasks, such as CIFAR-10. For a large number of participants, communication cost is one of the main challenges. We achieve a low communication cost by requiring only a single invocation of an efficient secure multiparty summation protocol. By relying on state-of-the-art feature extractors (SimCLR), we are able to utilize differentially private convex learners for non-trivial tasks such as CIFAR-10. Our experimental results illustrate that for $1{,}000$ users with $50$ data points each, our scheme outperforms state-of-the-art scalable distributed learning methods (differentially private federated learning, short DP-FL) while requiring around $500$ times fewer communication costs: For CIFAR-10, we achieve a classification accuracy of $79.7\,\%$ for an $\varepsilon = 0.59$ while DP-FL achieves $57.6\,\%$. More generally, we prove learnability properties for the average of such locally trained models: convergence and uniform stability. By only requiring strongly convex, smooth, and Lipschitz-continuous objective functions, locally trained via stochastic gradient descent (SGD), we achieve a strong utility-privacy tradeoff.
translated by 谷歌翻译
隐私保护是联合学习中的一个重要和有关的主题,特别是对于自然语言处理。在客户端设备中,用户每天由用户产生大量包含个人信息的文本。由于来自用户信息的直接应用可能会引起个人隐私,因此在联合学习中提出了许多方法来阻止来自客户端设备中的原始信息的中心模型。在本文中,我们尝试通过在保留语义时扭曲文本来更新语言。在实践中,我们利用最近提出的公制,邻近分布分配,以评估失真期间的语义保存。基于度量标准,我们提出了两个用于语义保存的失真,生成的一个和替代的框架。由于目前的自然语言处理领域中缺乏隐私相关任务,我们对命名实体识别和选区解析进行实验。我们的实验结果表明了我们扭曲的合理性和效率,作为个人隐私保护的方法。
translated by 谷歌翻译
分层文本分类包括将文本文档分类为类和子类的层次结构。尽管人造神经网络已经证明有用的是执行这项任务,但遗憾的是,由于培训数据记忆,他们可以将培训数据信息泄漏到对手。在模型培训期间使用差异隐私可以减轻泄漏攻击训练型型号,使模型能够以降低的模型精度安全地共享。这项工作调查了具有差异隐私保证的分层文本分类中的隐私实用权折衷,并识别了提供优越权衡的神经网络架构。为此,我们使用白盒会员推理攻击来凭经验评估三种广泛使用的神经网络架构的信息泄漏。我们表明,大型差异隐私参数已经足以完全减轻隶属度推理攻击,因此仅导致模型实用程序的中等减少。更具体地说,对于具有长文本的大型数据集,我们观察了基于变压器的模型,实现了整体有利的隐私式实用工具权,而对于具有较短文本的较小的数据集是优选的。
translated by 谷歌翻译
差异私有随机梯度下降(DP-SGD)通过在SGD训练期间将噪声添加到剪切梯度以满足差异隐私(DP)定义来防止训练数据隐私泄露。另一方面,跨越训练步骤的相同剪辑操作和附加噪声导致不稳定的更新甚至是增值时间,这显着降低了模型的准确性。在本文中,我们延长了高斯DP中央极限定理,以分别校准每个单独的步骤的剪切值和噪声功率。因此,我们能够提出动态DP-SGD,其在更新期间具有比DP-SGD更低的隐私成本,直到它们在目标更新数量达到相同的目标隐私预算之前。特别是动态DP-SGD,特别提高了模型精度,而不会通过逐渐降低剪切值和噪声功率来遵循完全隐私预算约束来牺牲隐私。关于各种深度学习任务的广泛实验,包括图像分类,自然语言处理和联合学习,表明所提出的动态DP-SGD算法稳定更新,因此,在较强烈的隐私保护区中显着提高了模型精度与DP-SGD相比。
translated by 谷歌翻译