在本文中,我们表明,自我监督的功能学习的最新进展使无监督的对象发现和语义细分,其性能与10年前的监督语义分割相匹配。我们提出了一种基于无监督的显着性掩码和自我监督的特征聚类的方法,以启动对象发现,然后在伪标签上训练语义分割网络,以在带有多个对象的图像上引导系统。我们介绍了Pascal VOC的结果,该结果远远超出了当前的最新状态(47.3 MIOU),我们首次在整个81个类别中向COCO上首次报告结果:我们的方法发现了34个类别,价格超过20美元\%$ iou,同时获得所有81个类别的平均值为19.6。
translated by 谷歌翻译
Unsupervised object discovery aims to localize objects in images, while removing the dependence on annotations required by most deep learning-based methods. To address this problem, we propose a fully unsupervised, bottom-up approach, for multiple objects discovery. The proposed approach is a two-stage framework. First, instances of object parts are segmented by using the intra-image similarity between self-supervised local features. The second step merges and filters the object parts to form complete object instances. The latter is performed by two CNN models that capture semantic information on objects from the entire dataset. We demonstrate that the pseudo-labels generated by our method provide a better precision-recall trade-off than existing single and multiple objects discovery methods. In particular, we provide state-of-the-art results for both unsupervised class-agnostic object detection and unsupervised image segmentation.
translated by 谷歌翻译
自我监督学习的进步带来了强大的一般图像表示学习方法。到目前为止,它主要集中在图像级学习上。反过来,诸如无监督图像细分之类的任务并没有从这种趋势中受益,因为它们需要空间多样性的表示。但是,学习密集的表示具有挑战性,因为在无监督的环境中,尚不清楚如何指导模型学习与各种潜在对象类别相对应的表示形式。在本文中,我们认为对物体部分的自我监督学习是解决此问题的方法。对象部分是可以推广的:它们是独立于对象定义的先验性,但可以分组以形成对象后验。为此,我们利用最近提出的视觉变压器参与对象的能力,并将其与空间密集的聚类任务相结合,以微调空间令牌。我们的方法超过了三个语义分割基准的最新方法,提高了17%-3%,表明我们的表示在各种对象定义下都是用途广泛的。最后,我们将其扩展到完全无监督的分割 - 即使在测试时间也可以完全避免使用标签信息 - 并证明了一种基于社区检测的自动合并发现的对象零件的简单方法可产生可观的收益。
translated by 谷歌翻译
无监督语义分割的任务旨在将像素聚集到语义上有意义的群体中。具体而言,分配给同一群集的像素应共享高级语义属性,例如其对象或零件类别。本文介绍了MaskDistill:基于三个关键想法的无监督语义细分的新颖框架。首先,我们提倡一种数据驱动的策略,以生成对象掩模作为语义分割事先的像素分组。这种方法省略了手工制作的先验,这些先验通常是为特定场景组成而设计的,并限制了竞争框架的适用性。其次,MaskDistill将对象掩盖簇簇以获取伪地真相,以训练初始对象分割模型。第三,我们利用此模型过滤出低质量的对象掩模。这种策略减轻了我们像素分组中的噪声,并导致了我们用来训练最终分割模型的干净掩模集合。通过组合这些组件,我们可以大大优于以前的作品,用于对Pascal(+11%MIOU)和COCO(+4%Mask AP50)进行无监督的语义分割。有趣的是,与现有方法相反,我们的框架不在低级图像提示上,也不限于以对象为中心的数据集。代码和型号将提供。
translated by 谷歌翻译
Recent advances in self-supervised visual representation learning have paved the way for unsupervised methods tackling tasks such as object discovery and instance segmentation. However, discovering objects in an image with no supervision is a very hard task; what are the desired objects, when to separate them into parts, how many are there, and of what classes? The answers to these questions depend on the tasks and datasets of evaluation. In this work, we take a different approach and propose to look for the background instead. This way, the salient objects emerge as a by-product without any strong assumption on what an object should be. We propose FOUND, a simple model made of a single $conv1\times1$ initialized with coarse background masks extracted from self-supervised patch-based representations. After fast training and refining these seed masks, the model reaches state-of-the-art results on unsupervised saliency detection and object discovery benchmarks. Moreover, we show that our approach yields good results in the unsupervised semantic segmentation retrieval task. The code to reproduce our results is available at https://github.com/valeoai/FOUND.
translated by 谷歌翻译
无监督的语义分割旨在在没有手动注释的情况下获得高级视觉功能的高级语义表示。大多数现有方法是基于其视觉提示或某些预定义规则尝试将像素分组为区域的自下而上的方法。因此,在具有多个对象的复杂场景和共享类似的视觉外观的某些对象时,这些自下而上的方法难以产生细粒度的语义分割。相比之下,我们提出了一个在极其复杂的情景中的细粒度分割的第一个自上而下的无监督语义分割框架。具体而言,我们首先以自我监督的学习方式从大规模视觉数据中获得丰富的高级结构化语义概念信息,并在发现目标数据集中呈现的潜在语义类别之前使用此类信息。其次,通过计算关于某些发现的语义表示的类激活地图(CAM)来计算发现的高电平语义类别以映射到低级像素特征。最后,所获得的凸轮用作伪标签,以培训分割模块并产生最终的语义分割。多个语义分割基准测试的实验结果表明,我们的自上而下的无监督分割对于对象为中心和以场景为中心的数据集,在不同的语义粒度水平下,并且优于所有最新的最先进的自下而上方法。我们的代码可用于\ URL {https://github.com/damo-cv/transfgugu}。
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
这项工作的目的是在训练过程中划分和名称图像区域,而无需访问像素级标签。为了解决这项任务,我们通过提炼两个基础模型的互补优势来构建细分器。第一个剪辑(Radford等,2021)具有将名称分配给图像内容的能力,但缺乏对象结构的可访问表示。第二个Dino(Caron等,2021)捕获了物体的空间范围,但对对象名称不了解。我们的方法称为名为Mask,开始使用剪辑来构建特定于类别的图像档案。这些图像用dino的类别 - 敏捷的对象检测器进行伪标记,然后使用夹档案标签通过类别特定的细分器进行完善。得益于精制面具的高质量,我们表明,在这些档案中训练有适当数据的培训的标准分割体系结构可为单对象和多对象图像带来令人印象深刻的语义细分能力。结果,我们提出的名字命名为在包括VOC2012,可可和大规模ImageNet-S数据集在内的五个基准上的一系列先前工作中表现出色。
translated by 谷歌翻译
我们在语义分段(NCDSS)中介绍了新型类发现的新设置,其目的在于将未标记的图像分段,其中给出了从标记的不相交类集之前知识的新类。与看起来在图像分类中的新型类发现的现有方法相比,我们专注于更具挑战性的语义细分。在NCDS中,我们需要区分对象和背景,并处理图像内的多个类的存在,这增加了使用未标记数据的难度。为了解决这个新的设置,我们利用标记的基础数据和显着模型来粗略地集群新颖的课程,以便在我们的基本框架中进行模型培训。此外,我们提出了基于熵的不确定性建模和自我培训(EUMS)框架来克服嘈杂的伪标签,进一步提高了新颖类别的模型性能。我们的欧姆斯利用熵排名技术和动态重新分配来蒸馏清洁标签,从而充分利用自我监督的学习来充分利用嘈杂的数据。我们在Pascal-5 $ ^ i $ dataSet上构建NCDSS基准。广泛的实验表明了基本框架的可行性(实现了平均Miou的49.81%)和欧姆斯框架的有效性(优于9.28%Miou的基本框架)。
translated by 谷歌翻译
最近对物体检测的自我监督预防方法在很大程度上专注于预先绘制物体探测器的骨干,忽略了检测架构的关键部分。相反,我们介绍了DetReg,这是一种新的自我监督方法,用于预先列出整个对象检测网络,包括对象本地化和嵌入组件。在预先绘制期间,DetReg预测对象本地化以与无监督区域提议生成器匹配本地化,并同时将相应的特征嵌入与自我监控图像编码器的嵌入式对齐。我们使用DETR系列探测器实施DetReg,并显示它在Coco,Pascal VOC和空中客车船基准上的Fineetuned时改善了竞争性基线。在低数据制度中,包括半监督和几秒钟学习设置,DetReg建立了许多最先进的结果,例如,在Coco上,我们看到10次检测和+3.5的AP改进A +6.0 AP改进当培训只有1%的标签时。对于代码和预用模型,请访问https://amirbar.net/detreg的项目页面
translated by 谷歌翻译
自我监督学习中的最新作品通过以对象为中心或基于区域的对应目标进行预处理,在场景级密集的预测任务上表现出了强劲的表现。在本文中,我们介绍了区域对象表示学习(R2O),该学习统一了基于区域的和以对象为中心的预处理。 R2O通过训练编码器以动态完善基于区域的段为中心的蒙版,然后共同学习掩模中内容的表示形式。 R2O使用“区域改进模块”将使用区域级先验生成的小图像区域分组为较大的区域,这些区域倾向于通过聚类区域级特征对应对应对象。随着训练的进展,R2O遵循了一个区域到对象的课程,该课程鼓励学习区域级的早期特征并逐渐进步以训练以对象为中心的表示。使用R2O的表示形式导致了Pascal VOC(+0.7 MIOU)和CityScapes(+0.4 MIOU)的语义细分表现最先进的表现,并在MS Coco(+0.3 Mask AP)上进行了实例细分。此外,在对Imagenet进行了预审进之后,R2O预处理的模型能够超过Caltech-UCSD Birds 200-2011数据集(+2.9 MIOU)的无监督物体细分中现有的最新对象细分。我们在https://github.com/kkallidromitis/r2o上提供了这项工作的代码/模型。
translated by 谷歌翻译
弱监督的实例分割(WSIS)被认为是比虚弱的语义细分(WSSS)更具挑战性的任务。与WSSS相比,WSIS需要实例的本地化,这很难从图像级标签中提取。为了解决问题,大多数WSIS方法都使用实例或对象级标签需要预先训练的现成提案技术,偏离完全图像级监督设置的基本定义。在本文中,我们提出了一种新的方法,包括两种创新组件。首先,我们提出了一种语义知识转移,通过将WSSS的知识转移到WSIS来获取伪实例标签,同时消除了对现货附加提案的需求。其次,我们提出了一种自我细化方法,可以在自我监督方案中优化伪实例标签,并以在线方式使用精制标签进行培训。在这里,我们发现伪实例标签中缺失的实例被分类为背景类的缺失实例发生了错误的现象。这种语义漂移发生了背景和实例在训练中的混淆,因此降低了分割性能。我们将此问题术语作为语义漂移问题,并表明我们所提出的自我细化方法消除了语义漂移问题。对Pascal VOC 2012和Coco的广泛实验证明了我们的方法的有效性,并且在没有现成的提案技术的情况下实现了相当大的表现。代码即将推出。
translated by 谷歌翻译
深度学习的快速发展在分割方面取得了长足的进步,这是计算机视觉的基本任务之一。但是,当前的细分算法主要取决于像素级注释的可用性,这些注释通常昂贵,乏味且费力。为了减轻这一负担,过去几年见证了越来越多的关注,以建立标签高效,深度学习的细分算法。本文对标签有效的细分方法进行了全面的审查。为此,我们首先根据不同类型的弱标签提供的监督(包括没有监督,粗略监督,不完整的监督和嘈杂的监督和嘈杂的监督),首先开发出一种分类法来组织这些方法,并通过细分类型(包括语义细分)补充,实例分割和全景分割)。接下来,我们从统一的角度总结了现有的标签有效的细分方法,该方法讨论了一个重要的问题:如何弥合弱监督和密集预测之间的差距 - 当前的方法主要基于启发式先导,例如交叉像素相似性,跨标签约束,跨视图一致性,跨图像关系等。最后,我们分享了对标签有效深层细分的未来研究方向的看法。
translated by 谷歌翻译
无监督的语义细分需要将标签分配给每个像素,而无需任何人类注释。尽管在单个图像的自我监督表示学习方面取得了进步,但使用像素级表示的无监督语义细分仍然是一项艰巨的任务,并且仍然没有被淘汰。在这项工作中,我们通过使用视觉概念(即具有语义含义的像素组,例如零件,对象和场景)提出一种自我监督的像素表示学习方法,以进行语义分割。为了指导自我监督的学习,我们利用像素和概念之间的三种类型的关系,包括像素与本地概念之间的关系,本地和全球概念以及概念的共发生。我们在包括Pascal VOC 2012,Coco 2017和Davis 2017的三个数据集上评估了学识渊博的像素嵌入和视觉概念。我们的结果表明,提议的方法对最近的无监督语义细分方法进行了一致性和实质性改进,并证明了视觉概念的视觉概念。可以向图像数据集揭示洞察力。
translated by 谷歌翻译
虽然现有的语义分割方法实现令人印象深刻的结果,但它们仍然努力将其模型逐步更新,因为新类别被发现。此外,逐个像素注释昂贵且耗时。本文提出了一种新颖的对语义分割学习弱增量学习的框架,旨在学习从廉价和大部分可用的图像级标签进行新课程。与现有的方法相反,需要从下线生成伪标签,我们使用辅助分类器,用图像级标签培训并由分段模型规范化,在线获取伪监督并逐步更新模型。我们通过使用由辅助分类器生成的软标签来应对过程中的内在噪声。我们展示了我们对Pascal VOC和Coco数据集的方法的有效性,表现出离线弱监督方法,并获得了具有全面监督的增量学习方法的结果。
translated by 谷歌翻译
We propose EM-PASTE: an Expectation Maximization(EM) guided Cut-Paste compositional dataset augmentation approach for weakly-supervised instance segmentation using only image-level supervision. The proposed method consists of three main components. The first component generates high-quality foreground object masks. To this end, an EM-like approach is proposed that iteratively refines an initial set of object mask proposals generated by a generic region proposal method. Next, in the second component, high-quality context-aware background images are generated using a text-to-image compositional synthesis method like DALL-E. Finally, the third component creates a large-scale pseudo-labeled instance segmentation training dataset by compositing the foreground object masks onto the original and generated background images. The proposed approach achieves state-of-the-art weakly-supervised instance segmentation results on both the PASCAL VOC 2012 and MS COCO datasets by using only image-level, weak label information. In particular, it outperforms the best baseline by +7.4 and +2.8 mAP0.50 on PASCAL and COCO, respectively. Further, the method provides a new solution to the long-tail weakly-supervised instance segmentation problem (when many classes may only have few training samples), by selectively augmenting under-represented classes.
translated by 谷歌翻译
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task in computer vision. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels and without any further training. To efficiently generate high-quality segmentation masks from CLIP, we propose a novel framework called CLIP-ES for WSSS. Our framework improves all three stages of WSSS with special designs for CLIP: 1) We introduce the softmax function into GradCAM and exploit the zero-shot ability of CLIP to suppress the confusion caused by non-target classes and backgrounds. Meanwhile, to take full advantage of CLIP, we re-explore text inputs under the WSSS setting and customize two text-driven strategies: sharpness-based prompt selection and synonym fusion. 2) To simplify the stage of CAM refinement, we propose a real-time class-aware attention-based affinity (CAA) module based on the inherent multi-head self-attention (MHSA) in CLIP-ViTs. 3) When training the final segmentation model with the masks generated by CLIP, we introduced a confidence-guided loss (CGL) to mitigate noise and focus on confident regions. Our proposed framework dramatically reduces the cost of training for WSSS and shows the capability of localizing objects in CLIP. Our CLIP-ES achieves SOTA performance on Pascal VOC 2012 and MS COCO 2014 while only taking 10% time of previous methods for the pseudo mask generation. Code is available at https://github.com/linyq2117/CLIP-ES.
translated by 谷歌翻译
We tackle the problem of novel class discovery and localization (NCDL). In this setting, we assume a source dataset with supervision for only some object classes. Instances of other classes need to be discovered, classified, and localized automatically based on visual similarity without any human supervision. To tackle NCDL, we propose a two-stage object detection network Region-based NCDL (RNCDL) that uses a region proposal network to localize regions of interest (RoIs). We then train our network to learn to classify each RoI, either as one of the known classes, seen in the source dataset, or one of the novel classes, with a long-tail distribution constraint on the class assignments, reflecting the natural frequency of classes in the real world. By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes, including those not part of the labeled object class vocabulary. Our experiments conducted using COCO and LVIS datasets reveal that our method is significantly more effective than multi-stage pipelines that rely on traditional clustering algorithms. Furthermore, we demonstrate the generality of our approach by applying our method to a large-scale Visual Genome dataset, where our network successfully learns to detect various semantic classes without direct supervision.
translated by 谷歌翻译
半弱监督和监督的学习最近在对象检测文献中引起了很大的关注,因为它们可以减轻成功训练深度学习模型所需的注释成本。半监督学习的最先进方法依赖于使用多阶段过程训练的学生老师模型,并大量数据增强。为弱监督的设置开发了自定义网络,因此很难适应不同的检测器。在本文中,引入了一种弱半监督的训练方法,以减少这些训练挑战,但通过仅利用一小部分全标记的图像,并在弱标记图像中提供信息来实现最先进的性能。特别是,我们基于通用抽样的学习策略以在线方式产生伪基真实(GT)边界框注释,消除了对多阶段培训的需求和学生教师网络配置。这些伪GT框是根据通过得分传播过程累积的对象建议的分类得分从弱标记的图像中采样的。 PASCAL VOC数据集的经验结果表明,使用VOC 2007作为完全标记的拟议方法可提高性能5.0%,而VOC 2012作为弱标记数据。同样,有了5-10%的完全注释的图像,我们观察到MAP中的10%以上的改善,表明对图像级注释的适度投资可以大大改善检测性能。
translated by 谷歌翻译
现有的突出实例检测(SID)方法通常从像素级注释数据集中学习。在本文中,我们向SID问题提出了第一个弱监督的方法。虽然在一般显着性检测中考虑了弱监管,但它主要基于使用类标签进行对象本地化。然而,仅使用类标签来学习实例知识的显着性信息是不普遍的,因为标签可能不容易地分离具有高语义亲和力的显着实例。由于子化信息提供了对突出项的数量的即时判断,因此自然地与检测突出实例相关,并且可以帮助分离相同实例的不同部分的同一类别的单独实例。灵感来自这一观察,我们建议使用课程和镇展标签作为SID问题的弱监督。我们提出了一种具有三个分支的新型弱监管网络:显着性检测分支利用类一致性信息来定位候选物体;边界检测分支利用类差异信息来解除对象边界;和Firedroid检测分支,使用子化信息来检测SALICE实例质心。然后融合该互补信息以产生突出的实例图。为方便学习过程,我们进一步提出了一种渐进的培训方案,以减少标签噪声和模型中学到的相应噪声,通过往复式突出实例预测和模型刷新模型。我们广泛的评估表明,该方法对精心设计的基线方法进行了有利地竞争,这些方法适应了相关任务。
translated by 谷歌翻译