计算特征向量中心(EC)的现有方法倾向于不足以足够强大,以确定EC在低时间复杂度或对大型网络的不可稳定可扩展的情况下,因此实际上不可靠/计算昂贵。因此,开发一种在低计算时间内可扩展的方法是本质的。因此,我们提出了一种深入学习模型,用于识别具有高特征传染媒介中心的节点。在识别具有监督学习方法的高排名节点时,有一些以前的作品,但在现实世界的情况下,没有标记图,因此监督学习方法的部署成为危险,其使用变得不切实际。因此,我们设计了CUL(与无监督的学习)方法,以无监督的方式学习网络中的相对射周分数。为此,我们开发了一种基于编码器解码器的框架,将节点映射到其各自的估计的EC分数。在不同的合成和现实网络上进行了广泛的实验。我们将CUL与类似于过去的工作的EC估算的基线监督方法进行了比较。观察到,即使在训练上训练数量的训练数据集时,CUL也可以在识别比其监督对方的更高的排名节点时提供相对更好的准确度分数。我们还表明,CUL比EC计算的传统基线方法更快且具有较小的运行时间。代码可在https://github.com/codexhammer/cul上获得。
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
最近,图形神经网络(GNN)通过利用图形结构和节点特征的知识来表现出图表表示的显着性能。但是,他们中的大多数都有两个主要限制。首先,GNN可以通过堆叠更多的层来学习高阶结构信息,但由于过度光滑的问题,无法处理较大的深度。其次,由于昂贵的计算成本和高内存使用情况,在大图上应用这些方法并不容易。在本文中,我们提出了节点自适应特征平滑(NAFS),这是一种简单的非参数方法,该方法构建了没有参数学习的节点表示。 NAFS首先通过特征平滑提取每个节点及其不同啤酒花的邻居的特征,然后自适应地结合了平滑的特征。此外,通过不同的平滑策略提取的平滑特征的合奏可以进一步增强构建的节点表示形式。我们在两个不同的应用程序方案上对四个基准数据集进行实验:节点群集和链接预测。值得注意的是,具有功能合奏的NAFS优于这些任务上最先进的GNN,并减轻上述大多数基于学习的GNN对应物的两个限制。
translated by 谷歌翻译
在许多现实世界应用中,基于图表编辑距离(GED)等指标(GED)等图表之间计算相似性得分的能力很重要。计算精确的GED值通常是一个NP硬性问题,传统算法通常在准确性和效率之间实现不令人满意的权衡。最近,图形神经网络(GNNS)为该任务提供了数据驱动的解决方案,该解决方案更有效,同时保持小图中的预测准确性(每图约10个节点)相似性计算。现有的基于GNN的方法分别嵌入了两个图(缺乏低水平的横向互动)或用于整个图表对(冗余和耗时)的部署跨冲突相互作用,在图中的节点数量增加。在本文中,我们着重于大规模图的相似性计算,并提出了“嵌入式磨合匹配”框架cosimgnn,该框架首先嵌入和粗大图形具有自适应池操作,然后在污垢的图表上部署细粒度的相互作用,以便在污垢的图形上进行污垢的互动最终相似性得分。此外,我们创建了几个合成数据集,这些数据集为图形相似性计算提供了新的基准测试。已经进行了有关合成数据集和现实世界数据集的详细实验,并且Cosimgnn实现了最佳性能,而推理时间最多是以前的Etab-The-The-The-ART的1/3。
translated by 谷歌翻译
Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.
translated by 谷歌翻译
时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文提格的研究建议[24]。
translated by 谷歌翻译
Wave propagation through nodes and links of a network forms the basis of spectral graph theory. Nevertheless, the sound emitted by nodes within the resonating chamber formed by a network are not well studied. The sound emitted by vibrations of individual nodes reflects the structure of the overall network topology but also the location of the node within the network. In this article, a sound recognition neural network is trained to infer centrality measures from the nodes' wave-forms. In addition to advancing network representation learning, sounds emitted by nodes are plausible in most cases. Auralization of the network topology may open new directions in arts, competing with network visualization.
translated by 谷歌翻译
图表表示学习方法为网络中的节点生成数值矢量表示,从而能够在标准机器学习模型中使用。这些方法旨在保留关系信息,使得图表中类似的节点在表示空间中彼此接近。相似性可以很大程度上基于两个概念之一:连接或结构作用。在节点结构角色重要的任务中,基于连接的方法表现出差的性能。最近的工作已经开始专注于学习方法的可扩展性,将数百万到数十亿节点和边缘的大规模图。许多无监督的节点表示学习算法无法缩放到大图,并且无法生成未经证明节点的节点表示。在这项工作中,我们提出了推理SiR-Gn,该模型在随机图上预先训练,然后快速计算节点表示,包括非常大的网络。我们证明该模型能够捕获节点的结构角色信息,并在未经网络上的节点和图形分类任务中显示出优异的性能。此外,我们观察到推理SIR-GN的可扩展性与大规模图表的最快电流方法相当。
translated by 谷歌翻译
Graph AutoCododers(GAE)和变分图自动编码器(VGAE)作为链接预测的强大方法出现。他们的表现对社区探测问题的印象不那么令人印象深刻,根据最近和同意的实验评估,它们的表现通常超过了诸如louvain方法之类的简单替代方案。目前尚不清楚可以通过GAE和VGAE改善社区检测的程度,尤其是在没有节点功能的情况下。此外,不确定是否可以在链接预测上同时保留良好的性能。在本文中,我们表明,可以高精度地共同解决这两个任务。为此,我们介绍和理论上研究了一个社区保留的消息传递方案,通过在计算嵌入空间时考虑初始图形结构和基于模块化的先验社区来掺杂我们的GAE和VGAE编码器。我们还提出了新颖的培训和优化策略,包括引入一个模块化的正规器,以补充联合链路预测和社区检测的现有重建损失。我们通过对各种现实世界图的深入实验验证,证明了方法的经验有效性,称为模块化感知的GAE和VGAE。
translated by 谷歌翻译
图形神经网络(GNN)在许多基于图的应用程序中取得了巨大成功。但是,巨大的尺寸和高稀疏度的图表阻碍了其在工业场景下的应用。尽管为大规模图提出了一些可扩展的GNN,但它们为每个节点采用固定的$ k $ hop邻域,因此在稀疏区域内采用大型繁殖深度时面临过度光滑的问题。为了解决上述问题,我们提出了一种新的GNN体系结构 - 图形注意多层感知器(GAMLP),该架构可以捕获不同图形知识范围之间的基本相关性。我们已经与天使平台部署了GAMLP,并进一步评估了现实世界数据集和大规模工业数据集的GAMLP。这14个图数据集的广泛实验表明,GAMLP在享有高可扩展性和效率的同时,达到了最先进的性能。具体来说,在我们的大规模腾讯视频数据集上的预测准确性方面,它的表现优于1.3 \%,同时达到了高达$ 50 \ times $ triending的速度。此外,它在开放图基准的最大同质和异质图(即OGBN-PAPERS100M和OGBN-MAG)的排行榜上排名第一。
translated by 谷歌翻译
在过去的几年中,已经开发了图形绘图技术,目的是生成美学上令人愉悦的节点链接布局。最近,利用可区分损失功能的使用已为大量使用梯度下降和相关优化算法铺平了道路。在本文中,我们提出了一个用于开发图神经抽屉(GND)的新框架,即依靠神经计算来构建有效且复杂的图的机器。 GND是图形神经网络(GNN),其学习过程可以由任何提供的损失函数(例如图形图中通常使用的损失函数)驱动。此外,我们证明,该机制可以由通过前馈神经网络计算的损失函数来指导,并根据表达美容特性的监督提示,例如交叉边缘的最小化。在这种情况下,我们表明GNN可以通过位置功能很好地丰富与未标记的顶点处理。我们通过为边缘交叉构建损失函数来提供概念验证,并在提议的框架下工作的不同GNN模型之间提供定量和定性的比较。
translated by 谷歌翻译
图表神经网络(GNNS)在各种机器学习任务中获得了表示学习的提高。然而,应用邻域聚合的大多数现有GNN通常在图中的图表上执行不良,其中相邻的节点属于不同的类。在本文中,我们示出了在典型的异界图中,边缘可以被引导,以及是否像是处理边缘,也可以使它们过度地影响到GNN模型的性能。此外,由于异常的限制,节点对来自本地邻域之外的类似节点的消息非常有益。这些激励我们开发一个自适应地学习图表的方向性的模型,并利用潜在的长距离相关性节点之间。我们首先将图拉普拉斯概括为基于所提出的特征感知PageRank算法向数字化,该算法同时考虑节点之间的图形方向性和长距离特征相似性。然后,Digraph Laplacian定义了一个图形传播矩阵,导致一个名为{\ em diglaciangcn}的模型。基于此,我们进一步利用节点之间的通勤时间测量的节点接近度,以便在拓扑级别上保留节点的远距离相关性。具有不同级别的10个数据集的广泛实验,同意级别展示了我们在节点分类任务任务中对现有解决方案的有效性。
translated by 谷歌翻译
近年来,图表表示学习越来越多地引起了越来越长的关注,特别是为了在节点和图表水平上学习对分类和建议任务的低维嵌入。为了能够在现实世界中的大规模图形数据上学习表示,许多研究专注于开发不同的抽样策略,以方便培训过程。这里,我们提出了一种自适应图策略驱动的采样模型(GPS),其中通过自适应相关计算实现了本地邻域中每个节点的影响。具体地,邻居的选择是由自适应策略算法指导的,直接贡献到消息聚合,节点嵌入更新和图级读出步骤。然后,我们从各种角度对图表分类任务进行全面的实验。我们所提出的模型在几个重要的基准测试中优于现有的3%-8%,实现了现实世界数据集的最先进的性能。
translated by 谷歌翻译
提高GCN的深度(预计将允许更多表达性)显示出损害性能,尤其是在节点分类上。原因的主要原因在于过度平滑。过度平滑的问题将GCN的输出驱动到一个在节点之间包含有限的区别信息的空间,从而导致表现不佳。已经提出了一些有关完善GCN架构的作品,但理论上仍然未知这些改进是否能够缓解过度平衡。在本文中,我们首先从理论上分析了通用GCN如何与深度增加的作用,包括通用GCN,GCN,具有偏见,RESGCN和APPNP。我们发现所有这些模型都以通用过程为特征:所有节点融合到Cuboid。在该定理下,我们建议通过在每个训练时期随机去除一定数量的边缘来减轻过度光滑的状态。从理论上讲,Dropedge可以降低过度平滑的收敛速度,或者可以减轻尺寸崩溃引起的信息损失。对模拟数据集的实验评估已可视化不同GCN之间过度平滑的差异。此外,对几个真正的基准支持的广泛实验,这些实验始终如一地改善各种浅GCN和深度GCN的性能。
translated by 谷歌翻译
图形神经网络(GNN)在学习强大的节点表示中显示了令人信服的性能,这些表现在保留节点属性和图形结构信息的强大节点表示中。然而,许多GNNS在设计有更深的网络结构或手柄大小的图形时遇到有效性和效率的问题。已经提出了几种采样算法来改善和加速GNN的培训,但他们忽略了解GNN性能增益的来源。图表数据中的信息的测量可以帮助采样算法来保持高价值信息,同时消除冗余信息甚至噪声。在本文中,我们提出了一种用于GNN的公制引导(MEGUIDE)子图学习框架。 MEGUIDE采用两种新颖的度量:功能平滑和连接失效距离,以指导子图采样和迷你批次的培训。功能平滑度专为分析节点的特征而才能保留最有价值的信息,而连接失败距离可以测量结构信息以控制子图的大小。我们展示了MEGUIDE在多个数据集上培训各种GNN的有效性和效率。
translated by 谷歌翻译
最近关于图表卷积网络(GCN)的研究表明,初始节点表示(即,第一次图卷积前的节点表示)很大程度上影响最终的模型性能。但是,在学习节点的初始表示时,大多数现有工作线性地组合了节点特征的嵌入,而不考虑特征之间的交互(或特征嵌入)。我们认为,当节点特征是分类时,例如,在许多实际应用程序中,如用户分析和推荐系统,功能交互通常会对预测分析进行重要信号。忽略它们将导致次优初始节点表示,从而削弱后续图表卷积的有效性。在本文中,我们提出了一个名为CatGCN的新GCN模型,当节点功能是分类时,为图表学习量身定制。具体地,我们将显式交互建模的两种方式集成到初始节点表示的学习中,即在每对节点特征上的本地交互建模和人工特征图上的全局交互建模。然后,我们通过基于邻域聚合的图形卷积来优化增强的初始节点表示。我们以端到端的方式训练CatGCN,并在半监督节点分类上展示它。来自腾讯和阿里巴巴数据集的三个用户分析的三个任务(预测用户年龄,城市和购买级别)的大量实验验证了CatGCN的有效性,尤其是在图表卷积之前执行特征交互建模的积极效果。
translated by 谷歌翻译