我们呈现深度区域竞争(DRC),这是一种旨在以完全无监督的方式从图像中提取前景对象的算法。前景提取可以被视为一种特殊的泛型图像分段的情况,专注于从背景中识别和解开对象。在这项工作中,我们通过以专家(MOE)的混合形式的生成图像建模和生成图像建模来重新思考前景提取,我们进一步介绍了学习的像素重新分配作为捕获规律的基本诱导偏差背景区域。通过这种建模,可以通过期望最大化(EM)自然地发现前景背景分区。我们表明,该方法有效利用了在分区过程中混合成分之间的相互作用,该分区过程紧密地连接到区域竞争,是通用图像分割的一个精细方法。实验表明,与现有方法相比,DRC在复杂的真实数据上表现出更具竞争力的性能和具有挑战性的多对象场景。此外,我们认为,即使在训练期间看不见的类别,DRC也可能概括为新的前景物体。
translated by 谷歌翻译
Human perception is structured around objects which form the basis for our higher-level cognition and impressive systematic generalization abilities. Yet most work on representation learning focuses on feature learning without even considering multiple objects, or treats segmentation as an (often supervised) preprocessing step. Instead, we argue for the importance of learning to segment and represent objects jointly. We demonstrate that, starting from the simple assumption that a scene is composed of multiple entities, it is possible to learn to segment images into interpretable objects with disentangled representations. Our method learns -without supervision -to inpaint occluded parts, and extrapolates to scenes with more objects and to unseen objects with novel feature combinations. We also show that, due to the use of iterative variational inference, our system is able to learn multi-modal posteriors for ambiguous inputs and extends naturally to sequences.
translated by 谷歌翻译
以对象为中心的表示是通过提供柔性抽象可以在可以建立的灵活性抽象来实现更系统的推广的有希望的途径。最近的简单2D和3D数据集的工作表明,具有对象的归纳偏差的模型可以学习段,并代表单独的数据的统计结构中的有意义对象,而无需任何监督。然而,尽管使用越来越复杂的感应偏差(例如,用于场景的尺寸或3D几何形状),但这种完全无监督的方法仍然无法扩展到不同的现实数据。在本文中,我们采取了弱监督的方法,并专注于如何使用光流的形式的视频数据的时间动态,2)调节在简单的对象位置上的模型可以用于启用分段和跟踪对象在明显更现实的合成数据中。我们介绍了一个顺序扩展,以便引入我们训练的推出,我们训练用于预测现实看的合成场景的光流,并显示调节该模型的初始状态在一小组提示,例如第一帧中的物体的质量中心,是足以显着改善实例分割。这些福利超出了新型对象,新颖背景和更长的视频序列的培训分配。我们还发现,在推论期间可以使用这种初始状态调节作为对特定物体或物体部分的型号查询模型,这可能会为一系列弱监管方法铺平,并允许更有效的互动训练有素的型号。
translated by 谷歌翻译
视觉场景的多样性非常丰富,不仅是因为物体和背景的无限组合,而且因为相同场景的观察可能随着观点的变化而变化很大。当观察来自多个观点的含有多个对象的视觉场景时,人类能够以每个观点以组成方式感知场景,同时实现不同视点的所谓的“对象恒定”,即使确切的观点是未计数器。这种能力对于人类来说是必不可少的,同时搬家,并有效地从视野中学习。它是有趣的设计模型具有相似的能力。在本文中,我们考虑从多个未指定的观点学习组成场景表示的新问题,而不使用任何监督,提出一个深深的生成模型,该模型将潜在的表示与视点无关的部分和一个视点依赖部分分开以解决这个问题。为了推断潜在的表示,通过神经网络迭代地集成在不同的视点中包含的信息。在几个专门设计的合成数据集上的实验表明,该方法能够从多个未指定的视点有效学习。
translated by 谷歌翻译
Unsupervised foreground-background segmentation aims at extracting salient objects from cluttered backgrounds, where Generative Adversarial Network (GAN) approaches, especially layered GANs, show great promise. However, without human annotations, they are typically prone to produce foreground and background layers with non-negligible semantic and visual confusion, dubbed "information leakage", resulting in notable degeneration of the generated segmentation mask. To alleviate this issue, we propose a simple-yet-effective explicit layer independence modeling approach, termed Independent Layer Synthesis GAN (ILSGAN), pursuing independent foreground-background layer generation by encouraging their discrepancy. Specifically, it targets minimizing the mutual information between visible and invisible regions of the foreground and background to spur interlayer independence. Through in-depth theoretical and experimental analyses, we justify that explicit layer independence modeling is critical to suppressing information leakage and contributes to impressive segmentation performance gains. Also, our ILSGAN achieves strong state-of-the-art generation quality and segmentation performance on complex real-world data.
translated by 谷歌翻译
深度学习方法依赖于高质量的人类监督,这仍然昂贵,耗时和容易出错,特别是对于图像分割任务。在本文中,我们提出了一种用于自动综合成对的照片 - 现实图像和分割掩模的方法,以便使用前景背景分割网络。特别地,我们学习一种生成的对抗网络,其将图像分解为前景和背景层,并通过最大化生成的图像和潜在变量之间的互信息来避免微小分解。改进的分层GAN可以合成更高质量的数据集,可以从中学习更高性能的分段网络。此外,采用分割网络来稳定分层GAN的训练作为返回,其与层状导致进一步交替培训。关于各种单对象数据集的实验表明,与相关方法相比,我们的方法实现了竞争的发电质量和分割性能。
translated by 谷歌翻译
Amodal完成是人类轻松执行的可视任务,但计算机视觉算法很难。目的是分割那些被遮挡的对象边界,因此是不可见的。对于深度神经网络,此任务特别具有挑战性,因为数据难以获得和注释。因此,我们将Amodal分段标记为任务和分发外概括问题。具体而言,我们用神经网络特征的贝叶斯生成模型替换神经网络中的完全连接的分类器。该模型仅使用边界框注释和类标签从非遮挡图像培训,但应用于概括任务到对象分段,并概括分发到段封闭对象。我们展示这种贝叶斯模型在学习之前的培训任务标签之外,这些模型如何超出培训任务标签。此外,通过利用异常过程,贝叶斯模型可以进一步概括分配以分配部分闭塞物体并预测其散阳物体边界。我们的算法优于使用相同的监控的替代方法,甚至优于在训练期间使用注释的Amodal分段的方法,当闭塞量大时。代码在https://github.com/yihongsun/bayesian-amodal公开。
translated by 谷歌翻译
以对象表示的学习背后的想法是,自然场景可以更好地建模为对象的组成及其关系,而不是分布式表示形式。可以将这种归纳偏置注入神经网络中,以可能改善具有多个对象的场景中下游任务的系统概括和性能。在本文中,我们在五个常见的多对象数据集上训练最先进的无监督模型,并评估细分指标和下游对象属性预测。此外,我们通过调查单个对象不超出分布的设置(例如,具有看不见的颜色,质地或形状或场景的全局属性)来研究概括和鲁棒性,例如,通过闭塞来改变,裁剪或增加对象的数量。从我们的实验研究中,我们发现以对象为中心的表示对下游任务很有用,并且通常对影响对象的大多数分布转移有用。但是,当分布转移以较低结构化的方式影响输入时,在模型和分布转移的情况下,分割和下游任务性能的鲁棒性可能会有很大差异。
translated by 谷歌翻译
代表学习者认为,解开变异的因素已经证明是在解决各种现实世界的关切方面是重要的,如公平和可意识。最初由具有独立假设的无监督模型组成,最近,监督和相关特征较弱,但没有生成过程的因果关系。相比之下,我们在原因生成过程的制度下工作,因为生成因子是独立的,或者可能被一组观察或未观察到的混乱困惑。我们通过解散因果过程的概念对解开表示的分析。我们激励对新指标和数据集进行研究,以研究因果解剖和提出两个评估指标和数据集。我们展示了我们的指标捕获了解开了因果过程的探索。最后,我们利用我们的指标和数据集对艺术艺术状态的实证研究进行了脱扣代表学习者,以从因果角度来评估它们。
translated by 谷歌翻译
我们提出了一种在数据样本集合中共同推断标签的方法,其中每个样本都包含一个观察和对标签的先验信念。通过隐式假设存在一种生成模型,可区分预测因子是后部,我们得出了一个训练目标,该目标允许在弱信念下学习。该配方统一了各种机器学习设置;弱信念可以以嘈杂或不完整的标签形式出现,由辅助输入的不同预测机制给出的可能性,或反映出有关手头问题结构的知识的常识性先验。我们证明了有关各种问题的建议算法:通过负面培训示例进行分类,从排名中学习,弱和自我监督的空中成像细分,视频框架的共段以及粗糙的监督文本分类。
translated by 谷歌翻译
最近有一个浪涌的方法,旨在以无监督的方式分解和分段场景,即无监督的多对象分段。执行此类任务是计算机愿景的长期目标,提供解锁对象级推理,而无需致密的注释来列车分段模型。尽管取得了重大进展,但在视觉上简单的场景上开发和培训了当前的模型,描绘了纯背景上的单色物体。然而,自然界在视觉上复杂,与多样化的纹理和复杂的照明效果等混杂方面。在这项研究中,我们展示了一个名为Clevrtex的新基准,设计为比较,评估和分析算法的下一个挑战。 CLEVRTEX采用具有不同形状,纹理和光映射材料的合成场景,采用物理基于渲染技术创建。它包括图50k示例,描绘了在背景上布置的3-10个对象,使用60材料的目录创建,以及使用25种不同材料创建的10k图像的另一测试集。我们在CLEVRTEX上基准最近近期无监督的多对象分段模型,并找到所有最先进的方法无法在纹理环境中学习良好的陈述,尽管在更简单的数据上表现令人印象深刻。我们还创建了Clevrtex DataSet的变体,控制了场景复杂性的不同方面,并探讨了各个缺点的当前方法。数据集和代码可在https://www.robots.ox.ac.uk/~vgg/research/clevrtex中获得。
translated by 谷歌翻译
视觉世界可以以稀疏相互作用的不同实体来嘲笑。在动态视觉场景中发现这种组合结构已被证明对端到端的计算机视觉方法有挑战,除非提供明确的实例级别的监督。利用运动提示的基于老虎机的模型最近在学习代表,细分和跟踪对象的情况下没有直接监督显示了巨大的希望,但是它们仍然无法扩展到复杂的现实世界多对象视频。为了弥合这一差距,我们从人类发展中汲取灵感,并假设以深度信号形式的场景几何形状的信息可以促进以对象为中心的学习。我们介绍了一种以对象为中心的视频模型SAVI ++,该模型经过训练,可以预测基于插槽的视频表示的深度信号。通过进一步利用模型缩放的最佳实践,我们能够训练SAVI ++以细分使用移动摄像机记录的复杂动态场景,其中包含在自然主义背景上具有不同外观的静态和移动对象,而无需进行分割监督。最后,我们证明,通过使用从LIDAR获得的稀疏深度信号,Savi ++能够从真实World Waymo Open DataSet中的视频中学习新兴对象细分和跟踪。
translated by 谷歌翻译
代表物体粒度的场景是场景理解和决策的先决条件。我们提出PrisMoNet,一种基于先前形状知识的新方法,用于学习多对象3D场景分解和来自单个图像的表示。我们的方法学会在平面曲面上分解具有多个对象的合成场景的图像,进入其组成场景对象,并从单个视图推断它们的3D属性。经常性编码器从输入的RGB图像中回归3D形状,姿势和纹理的潜在表示。通过可差异化的渲染,我们培训我们的模型以自我监督方式从RGB-D图像中分解场景。 3D形状在功能空间中连续表示,作为我们以监督方式从示例形状预先训练的符号距离函数。这些形状的前沿提供弱监管信号,以更好地条件挑战整体学习任务。我们评估我们模型在推断3D场景布局方面的准确性,展示其生成能力,评估其对真实图像的概括,并指出了学习的表示的益处。
translated by 谷歌翻译
随着几个行业正在朝着建模大规模的3D虚拟世界迈进,因此需要根据3D内容的数量,质量和多样性来扩展的内容创建工具的需求变得显而易见。在我们的工作中,我们旨在训练Parterant 3D生成模型,以合成纹理网格,可以通过3D渲染引擎直接消耗,因此立即在下游应用中使用。 3D生成建模的先前工作要么缺少几何细节,因此在它们可以生成的网格拓扑中受到限制,通常不支持纹理,或者在合成过程中使用神经渲染器,这使得它们在常见的3D软件中使用。在这项工作中,我们介绍了GET3D,这是一种生成模型,该模型直接生成具有复杂拓扑,丰富几何细节和高保真纹理的显式纹理3D网格。我们在可区分的表面建模,可区分渲染以及2D生成对抗网络中桥接了最新成功,以从2D图像集合中训练我们的模型。 GET3D能够生成高质量的3D纹理网格,从汽车,椅子,动物,摩托车和人类角色到建筑物,对以前的方法进行了重大改进。
translated by 谷歌翻译
为了帮助代理在其构建块方面的场景的原因,我们希望提取任何给定场景的组成结构(特别是包括场景的对象的配置和特征)。当需要推断出现在代理的位置/观点的同时需要推断场景结构时,这个问题特别困难,因为两个变量共同引起代理人的观察。我们提出了一个无监督的变分方法来解决这个问题。利用不同场景存在的共享结构,我们的模型学会从RGB视频输入推断出两组潜在表示:一组“对象”潜伏,对应于场景的时间不变,对象级内容,如以及一组“帧”潜伏,对应于全局时变元素,例如视点。这种潜水所的分解允许我们的模型Simone,以单独的方式表示对象属性,其不依赖于视点。此外,它允许我们解解对象动态,并将其轨迹总结为时间抽象的,查看 - 不变,每个对象属性。我们在三个程序生成的视频数据集中展示了这些功能,以及在查看合成和实例分段方面的模型的性能。
translated by 谷歌翻译
Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed representations that do not capture the compositional properties of natural scenes. In this paper, we present the Slot Attention module, an architectural component that interfaces with perceptual representations such as the output of a convolutional neural network and produces a set of task-dependent abstract representations which we call slots. These slots are exchangeable and can bind to any object in the input by specializing through a competitive procedure over multiple rounds of attention. We empirically demonstrate that Slot Attention can extract object-centric representations that enable generalization to unseen compositions when trained on unsupervised object discovery and supervised property prediction tasks.
translated by 谷歌翻译
常规的显着性预测模型通常会学习从图像到其显着图的确定性映射,因此无法解释人类注意力的主观性质。在本文中,为了模拟视觉显着性的不确定性,我们通过在给定输入图像上学习有条件的概率分布来研究显着性预测问题,并将其视为从显着图中的有条件预测问题,并将显着性预测视为从该过程中的样本预测。学会的分布。具体而言,我们提出了一个生成合作的显着性预测框架,其中有条件的潜在变量模型(LVM)和有条件的基于能量的模型(EBM)经过共同训练以以合作的方式预测显着物体。 LVM用作快速但粗糙的预测指标,可有效地生成初始显着图,然后通过EBM的迭代langevin修订将其作为缓慢但良好的预测指标进行完善。如此粗略的合作显着性预测策略提供了两者中最好的。此外,我们提出了“恢复合作学习”策略,并将其应用于弱监督的显着性预测,其中部分观察到了训练图像的显着性注释。最后,我们发现EBM中学习的能量函数可以用作改进模块,可以完善其他预训练的显着性预测模型的结果。实验结果表明,我们的模型可以生成图像的一组不同和合理的显着性图,并在完全监督和弱监督的显着性预测任务中获得最先进的性能。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
视觉变压器网络在许多计算机视觉任务中显示出优越性。在本文中,我们通过在基于信息的基于能量检测之前提出具有潜在变量的新型生成视觉变压器进一步逐步。视觉变压器网络和基于能量的先前模型都是通过Markov链蒙特卡罗的最大似然估计共同训练,其中来自居民后的静缘和先前分布的采样由Langevin Dynamics进行。此外,对于生成视觉变压器,我们可以容易地从图像中获得像素明智的不确定性图,该图像指示对从图像预测显着性的模型置信度。与现有的生成模型不同,该模型定义了潜在变量的先前分配作为简单的各向同性高斯分布,我们的模型使用基于能量的信息性,以捕获数据的潜在空间更具表现力。我们将建议的框架应用于RGB和RGB-D突出对象检测任务。广泛的实验结果表明,我们的框架不仅可以达到准确的显着性预测,而且可以实现与人类感知一致的有意义的不确定性地图。
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译