基于高质量标签的鱼类跟踪和细分的DNN很昂贵。替代无监督的方法取决于视频数据中自然发生的空间和时间变化来生成嘈杂的伪界图标签。这些伪标签用于训练多任务深神经网络。在本文中,我们提出了一个三阶段的框架,用于强大的鱼类跟踪和分割,其中第一阶段是光流模型,该模型使用帧之间的空间和时间一致性生成伪标签。在第二阶段,一个自我监督的模型会逐步完善伪标签。在第三阶段,精制标签用于训练分割网络。在培训或推理期间没有使用人类注释。进行了广泛的实验来验证我们在三个公共水下视频数据集中的方法,并证明它对视频注释和细分非常有效。我们还评估框架对不同成像条件的鲁棒性,并讨论当前实施的局限性。
translated by 谷歌翻译
由于水下环境复杂,水下鱼类分割以估计鱼体测量值仍然无法解决。依靠完全监督的分割模型需要收集每个像素标签,这很耗时且容易过度拟合。自我监督的学习方法可以帮助避免大型注释的培训数据集的要求,但是,在现实世界中,它们应该达到良好的细分质量。在本文中,我们介绍了一种基于变压器的方法,该方法使用自学意义重大的鱼类分割。我们提出的模型对视频进行了培训 - 没有任何注释,可以在野外现场拍摄的水下视频中进行鱼类分割。我们表明,当对一个数据集的一系列水下视频进行培训时,该建议的模型超过了以前的基于CNN的基于CNN和基于变压器的自我监督方法,并在两个未见的水下视频数据集中相对接近具有监督方法的性能。这表明了我们的模型的概括性以及它不需要预培训模型的事实。此外,我们表明,由于其密集的表示学习,我们的模型是计算效率的。我们提供定量和定性的结果,以证明我们的模型的重要功能。
translated by 谷歌翻译
In this paper we present a new computer vision task, named video instance segmentation. The goal of this new task is simultaneous detection, segmentation and tracking of instances in videos. In words, it is the first time that the image instance segmentation problem is extended to the video domain. To facilitate research on this new task, we propose a large-scale benchmark called YouTube-VIS, which consists of 2,883 high-resolution YouTube videos, a 40-category label set and 131k high-quality instance masks.In addition, we propose a novel algorithm called Mask-Track R-CNN for this task. Our new method introduces a new tracking branch to Mask R-CNN to jointly perform the detection, segmentation and tracking tasks simultaneously. Finally, we evaluate the proposed method and several strong baselines on our new dataset. Experimental results clearly demonstrate the advantages of the proposed algorithm and reveal insight for future improvement. We believe the video instance segmentation task will motivate the community along the line of research for video understanding.
translated by 谷歌翻译
在本文中,我们介绍了Siammask,这是一个实时使用相同简单方法实时执行视觉对象跟踪和视频对象分割的框架。我们通过通过二进制细分任务来增强其损失,从而改善了流行的全面暹罗方法的离线培训程序。离线训练完成后,SiamMask只需要一个单个边界框来初始化,并且可以同时在高框架速率下进行视觉对象跟踪和分割。此外,我们表明可以通过简单地以级联的方式重新使用多任务模型来扩展框架以处理多个对象跟踪和细分。实验结果表明,我们的方法具有较高的处理效率,每秒约55帧。它可以在视觉对象跟踪基准测试中产生实时最新结果,同时以高速进行视频对象分割基准测试以高速显示竞争性能。
translated by 谷歌翻译
视频分割,即将视频帧分组到多个段或对象中,在广泛的实际应用中扮演关键作用,例如电影中的视觉效果辅助,自主驾驶中的现场理解,以及视频会议中的虚拟背景创建,名称一些。最近,由于计算机愿景中的联系复兴,一直存在众多深度学习的方法,这一直专用于视频分割并提供引人注目的性能。在这项调查中,通过引入各自的任务设置,背景概念,感知需要,开发历史,以及开发历史,综合审查这一领域的两种基本研究,即在视频和视频语义分割中,即视频和视频语义分割中的通用对象分段(未知类别)。主要挑战。我们还提供关于两种方法和数据集的代表文学的详细概述。此外,我们在基准数据集中呈现了审查方法的定量性能比较。最后,我们指出了这一领域的一套未解决的开放问题,并提出了进一步研究的可能机会。
translated by 谷歌翻译
Instance segmentation in videos, which aims to segment and track multiple objects in video frames, has garnered a flurry of research attention in recent years. In this paper, we present a novel weakly supervised framework with \textbf{S}patio-\textbf{T}emporal \textbf{C}ollaboration for instance \textbf{Seg}mentation in videos, namely \textbf{STC-Seg}. Concretely, STC-Seg demonstrates four contributions. First, we leverage the complementary representations from unsupervised depth estimation and optical flow to produce effective pseudo-labels for training deep networks and predicting high-quality instance masks. Second, to enhance the mask generation, we devise a puzzle loss, which enables end-to-end training using box-level annotations. Third, our tracking module jointly utilizes bounding-box diagonal points with spatio-temporal discrepancy to model movements, which largely improves the robustness to different object appearances. Finally, our framework is flexible and enables image-level instance segmentation methods to operate the video-level task. We conduct an extensive set of experiments on the KITTI MOTS and YT-VIS datasets. Experimental results demonstrate that our method achieves strong performance and even outperforms fully supervised TrackR-CNN and MaskTrack R-CNN. We believe that STC-Seg can be a valuable addition to the community, as it reflects the tip of an iceberg about the innovative opportunities in the weakly supervised paradigm for instance segmentation in videos.
translated by 谷歌翻译
水果和蔬菜的检测,分割和跟踪是精确农业的三个基本任务,实现了机器人的收获和产量估计。但是,现代算法是饥饿的数据,并非总是有可能收集足够的数据来运用最佳性能的监督方法。由于数据收集是一项昂贵且繁琐的任务,因此在农业中使用计算机视觉的能力通常是小企业无法实现的。在此背景下的先前工作之后,我们提出了一种初始弱监督的解决方案,以减少在精确农业应用程序中获得最新检测和细分所需的数据,在这里,我们在这里改进该系统并探索跟踪果实的问题果园。我们介绍了拉齐奥南部(意大利)葡萄的葡萄园案例,因为葡萄由于遮挡,颜色和一般照明条件而难以分割。当有一些可以用作源数据的初始标记数据(例如,葡萄酒葡萄数据)时,我们会考虑这种情况,但与目标数据有很大不同(例如表格葡萄数据)。为了改善目标数据的检测和分割,我们建议使用弱边界框标签训练分割算法,而对于跟踪,我们从运动算法中利用3D结构来生成来自已标记样品的新标签。最后,将两个系统组合成完整的半监督方法。与SOTA监督解决方案的比较表明,我们的方法如何能够训练以很少的标记图像和非常简单的标签来实现高性能的新型号。
translated by 谷歌翻译
半监控视频对象分段(VOS)旨在在视频序列中分段一些移动对象,其中通过注释第一帧来指定这些对象。已经考虑了许多现有的半监督VOS方法以提高分割精度的光学流程。然而,由于光学流量估计的高复杂性,光流基的半监控VOS方法不能实时运行。在该研究中提出了由特征提取网络(F),外观网络(A),运动网络(A)和集成网络(I)组成的FAMINET,以解决上述问题。外观网络基于对象的静态外观输出初始分割结果。运动网络通过很少的参数估计光学流量,这些参数通过在线记忆算法快速优化,该算法被称为松弛最陡血迹。集成网络使用光流来改进初始分割结果。广泛的实验表明,FAMINET在DAVIS和YOUTUBE-VOS基准上表现出其他最先进的半监督VOS方法,并且它在准确性和效率之间实现了良好的权衡。我们的代码可在https://github.com/liuziyang123/faminet获得。
translated by 谷歌翻译
弱监督的视频对象本地化(WSVOL)允许仅使用全局视频标签(例如对象类)在视频中找到对象。最先进的方法依赖于多个独立阶段,其中最初的时空建议是使用视觉和运动提示生成的,然后确定和完善了突出的对象。本地化是通过在一个或多个视频上解决优化问题来完成的,并且视频标签通常用于视频集群。这需要每件型号或每类制造代价高昂的推理。此外,由于无监督的运动方法(如光流)或视频标签是从优化中丢弃的,因此本地化区域不是必需的判别。在本文中,我们利用成功的类激活映射(CAM)方法,该方法是基于静止图像而设计的。引入了一种新的时间凸轮(TCAM)方法,以训练一种判别深度学习(DL)模型,以使用称为CAM-Temporal Max Max Pooling(CAM-TMP)的聚集机制在视频中利用时空信息,而不是连续的凸轮。特别是,感兴趣区域的激活(ROI)是从审计的CNN分类器生成的CAM中收集的,以构建Pseudo-Labels构建用于训练DL模型的伪标记。此外,使用全局无监督的尺寸约束和诸如CRF之类的局部约束来产生更准确的凸轮。对单个独立帧的推断允许并行处理框架片段和实时定位。在两个挑战性的YouTube-Objects数据集上进行无限制视频的广泛实验,表明CAM方法(在独立框架上训练)可以产生不错的定位精度。我们提出的TCAM方法在WSVOL准确性方面达到了新的艺术品,并且视觉结果表明它可以适用于后续任务,例如视觉对象跟踪和检测。代码公开可用。
translated by 谷歌翻译
我们的视频是否可以在场景中存在沉重的遮挡时感知对象?为了回答这个问题,我们收集一个名为OVIS的大型数据集,用于遮挡视频实例分段,即同时检测,段和跟踪遮挡场景中的实例。 OVIS由25个语义类别的296K高质量的掩码组成,通常发生对象遮挡。虽然我们的人类视觉系统可以通过语境推理和关联来理解那些被遮挡的情况,但我们的实验表明当前的视频理解系统不能。在ovis数据集上,最先进的算法实现的最高AP仅为16.3,这揭示了我们仍然处于创建对象,实例和视频中的新生阶段。我们还提出了一个简单的即插即用模块,执行时间特征校准,以补充闭塞引起的缺失对象线索。基于MaskTrack R-CNN和SIPMASK构建,我们在OVIS数据集中获得了显着的AP改进。 ovis数据集和项目代码可在http://songbai.site/ovis获得。
translated by 谷歌翻译
卫星摄像机可以为大型区域提供连续观察,这对于许多遥感应用很重要。然而,由于对象的外观信息不足和缺乏高质量数据集,在卫星视频中实现移动对象检测和跟踪仍然具有挑战性。在本文中,我们首先构建一个具有丰富注释的大型卫星视频数据集,用于移动对象检测和跟踪的任务。该数据集由Jilin-1卫星星座收集,并由47个高质量视频组成,对象检测有1,646,038兴趣的情况和用于对象跟踪的3,711个轨迹。然后,我们引入运动建模基线,以提高检测速率并基于累积多帧差异和鲁棒矩阵完成来减少误报。最后,我们建立了第一个用于在卫星视频中移动对象检测和跟踪的公共基准,并广泛地评估在我们数据集上几种代表方法的性能。还提供了综合实验分析和富有魅力的结论。数据集可在https://github.com/qingyonghu/viso提供。
translated by 谷歌翻译
在本文中,我们描述了一种基于图的算法,该算法使用自我监管的变压器获得的功能来检测图像和视频中的显着对象。使用这种方法,将构成图像或视频的图像贴片组织成一个完全连接的图,其中每对贴片之间的边缘使用变压器学到的功能在补丁之间标记为相似性得分。然后将显着物体的检测和分割作为图形问题配制,并使用经典的归一化切割算法解决。尽管这种方法很简单,但它仍可以在几个常见的图像和视频检测和分割任务上实现最新结果。对于无监督的对象发现,当使用VOC07,VOC12和COCO20K数据集进行测试时,这种方法的优于竞争方法的差距分别为6.1%,5.7%和2.6%。对于图像中无监督的显着性检测任务,此方法将联合(IOU)的交叉分数提高了4.4%,5.6%和5.2%。与当前最新技术相比,与ECSD,DUTS和DUT-OMRON数据集进行测试时。该方法还通过戴维斯,SEGTV2和FBMS数据集为无监督的视频对象分割任务实现了竞争结果。
translated by 谷歌翻译
人类可以轻松地在不知道它们的情况下段移动移动物体。从持续的视觉观测中可能出现这种对象,激励我们与未标记的视频同时进行建模和移动。我们的前提是视频具有通过移动组件相关的相同场景的不同视图,并且右区域分割和区域流程将允许相互视图合成,其可以从数据本身检查,而无需任何外部监督。我们的模型以两个单独的路径开头:一种外观途径,其输出单个图像的基于特征的区域分割,以及输出一对图像的运动功能的运动路径。然后,它将它们绑定在称为段流的联合表示中,该分段流汇集在每个区域上的流程偏移,并提供整个场景的移动区域的总表征。通过培训模型,以最小化基于段流的视图综合误差,我们的外观和运动路径自动学习区域分割和流量估计,而不分别从低级边缘或光学流量构建它们。我们的模型展示了外观途径中对象的令人惊讶的出现,超越了从图像的零射对对象分割上的工作,从带有无监督的测试时间适应的视频移动对象分割,并通过监督微调,通过监督微调。我们的工作是来自视频的第一个真正的零点零点对象分段。它不仅开发了分割和跟踪的通用对象,而且还优于无增强工程的基于普遍的图像对比学习方法。
translated by 谷歌翻译
We introduce a novel framework to track multiple objects in overhead camera videos for airport checkpoint security scenarios where targets correspond to passengers and their baggage items. We propose a Self-Supervised Learning (SSL) technique to provide the model information about instance segmentation uncertainty from overhead images. Our SSL approach improves object detection by employing a test-time data augmentation and a regression-based, rotation-invariant pseudo-label refinement technique. Our pseudo-label generation method provides multiple geometrically-transformed images as inputs to a Convolutional Neural Network (CNN), regresses the augmented detections generated by the network to reduce localization errors, and then clusters them using the mean-shift algorithm. The self-supervised detector model is used in a single-camera tracking algorithm to generate temporal identifiers for the targets. Our method also incorporates a multi-view trajectory association mechanism to maintain consistent temporal identifiers as passengers travel across camera views. An evaluation of detection, tracking, and association performances on videos obtained from multiple overhead cameras in a realistic airport checkpoint environment demonstrates the effectiveness of the proposed approach. Our results show that self-supervision improves object detection accuracy by up to $42\%$ without increasing the inference time of the model. Our multi-camera association method achieves up to $89\%$ multi-object tracking accuracy with an average computation time of less than $15$ ms.
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
本文推动了在图像中分解伪装区域的信封,成了有意义的组件,即伪装的实例。为了促进伪装实例分割的新任务,我们将在数量和多样性方面引入DataSet被称为Camo ++,该数据集被称为Camo ++。新数据集基本上增加了具有分层像素 - 明智的地面真理的图像的数量。我们还为伪装实例分割任务提供了一个基准套件。特别是,我们在各种场景中对新构造的凸轮++数据集进行了广泛的评估。我们还提出了一种伪装融合学习(CFL)伪装实例分割框架,以进一步提高最先进的方法的性能。数据集,模型,评估套件和基准测试将在我们的项目页面上公开提供:https://sites.google.com/view/ltnghia/research/camo_plus_plus
translated by 谷歌翻译
结合同时定位和映射(SLAM)估计和动态场景建模可以高效地在动态环境中获得机器人自主权。机器人路径规划和障碍避免任务依赖于场景中动态对象运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态对象感知SLAM系统,用于利用语义信息,使得能够在场景中进行准确的运动估计和跟踪动态刚性物体,而无需任何先前的物体形状或几何模型的知识。所提出的方法识别和跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致机器人轨迹的高度准确估计和对象的全部SE(3)运动以及环境的时空地图。该系统能够从对象的SE(3)运动中提取线性速度估计,为复杂的动态环境中的导航提供重要功能。我们展示了所提出的系统对许多真实室内和室外数据集的性能,结果表明了对最先进的算法的一致和实质性的改进。可以使用源代码的开源版本。
translated by 谷歌翻译
为视频中的每个像素分配语义类和跟踪身份的任务称为视频Panoptic分段。我们的工作是第一个在真实世界中瞄准这项任务,需要在空间和时间域中的密集解释。由于此任务的地面真理难以获得,但是,现有数据集是合成构造的或仅在短视频剪辑中稀疏地注释。为了克服这一点,我们介绍了一个包含两个数据集,Kitti-Step和Motchallenge步骤的新基准。数据集包含长视频序列,提供具有挑战性的示例和用于研究长期像素精确分割和在真实条件下跟踪的测试床。我们进一步提出了一种新的评估度量分割和跟踪质量(STQ),其相当余额平衡该任务的语义和跟踪方面,并且更适合评估任意长度的序列。最后,我们提供了几个基线来评估此新具有挑战性数据集的现有方法的状态。我们已将我们的数据集,公制,基准服务器和基准公开提供,并希望这将激发未来的研究。
translated by 谷歌翻译
估计目标范围在视觉对象跟踪中构成了基本挑战。通常,跟踪器以箱子为中心,并且完全依靠边界框来定义场景中的目标。实际上,对象通常具有复杂的形状,并且与图像轴不符。在这些情况下,边界框不能提供对目标的准确描述,并且通常包含大多数背景像素。我们提出了一个以细分为中心的跟踪管道,该管道不仅会产生高度准确的分割掩码,而且还可以使用分割掩码而不是边界框来使用内部。因此,我们的跟踪器能够更好地学习目标表示形式,该目标表示明确将场景中的目标与背景内容区分开来。为了实现具有挑战性的跟踪方案的必要鲁棒性,我们提出了一个单独的实例本地化组件,该组件用于在产生输出掩码时用于调节分割解码器。我们从分段掩码中推断出一个边界框,验证我们的跟踪器在挑战跟踪数据集方面,并在LASOT上实现新的最新状态,并以69.7%的速度获得了AUC得分。由于大多数跟踪数据集不包含掩码注释,因此我们无法使用它们来评估预测的分割掩码。相反,我们在两个流行的视频对象细分数据集上验证了分割质量。
translated by 谷歌翻译
In this paper we illustrate how to perform both visual object tracking and semi-supervised video object segmentation, in real-time, with a single simple approach. Our method, dubbed SiamMask, improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task. Once trained, SiamMask solely relies on a single bounding box initialisation and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 55 frames per second. Despite its simplicity, versatility and fast speed, our strategy allows us to establish a new state of the art among real-time trackers on VOT-2018, while at the same time demonstrating competitive performance and the best speed for the semisupervised video object segmentation task on DAVIS-2016 and DAVIS-2017. The project website is http://www. robots.ox.ac.uk/ ˜qwang/SiamMask.
translated by 谷歌翻译