物联网(物联网)通过通过互联网控制设备/事物来改变生活。物联网已为日常问题指定了许多智能解决方案,将网络物理系统(CPS)和其他经典领域转化为智能区域。构成物联网的大多数边缘设备具有极低的处理能力。为了降低物联网网络,攻击者可以利用这些设备进行各种网络攻击。此外,随着越来越多的物联网设备的添加,新的和未知威胁的潜力呈指数增长。因此,必须开发针对可以识别此类威胁的物联网网络的智能安全框架。在本文中,我们开发了一种无监督的集合学习模型,该模型能够从未标记的数据集中检测物联网中的新或未知攻击。系统生成的标记数据集用于训练深度学习模型以检测IoT网络攻击。此外,研究提出了一种特征选择机制,用于识别数据集中最相关的方面以检测攻击。该研究表明,建议的模型能够识别未标记的物联网网络数据集和DBN(深信念网络)的表现优于其他模型,检测准确性为97.5%,错误警报率为2.3%,当使用由标记的数据集进行培训时建议的方法。
translated by 谷歌翻译
Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.
translated by 谷歌翻译
网络流量数据是不同网络协议下不同数据字节数据包的组合。这些流量数据包具有复杂的时变非线性关系。现有的最先进的方法通过基于相关性和使用提取空间和时间特征的混合分类技术将特征融合到多个子集中,通过将特征融合到多个子集中来提高这一挑战。这通常需要高计算成本和手动支持,这限制了它们的网络流量的实时处理。为了解决这个问题,我们提出了一种基于协方差矩阵的新型新颖特征提取方法,提取网络流量数据的空间时间特征来检测恶意网络流量行为。我们所提出的方法中的协方差矩阵不仅自然地对不同网络流量值之间的相互关系进行了编码,而且还具有落在riemannian歧管中的明确的几何形状。利莫曼歧管嵌入距离度量,便于提取用于检测恶意网络流量的判别特征。我们在NSL-KDD和UNSW-NB15数据集上进行了评估模型,并显示了我们提出的方法显着优于与数据集上的传统方法和其他现有研究。
translated by 谷歌翻译
The Internet of Things (IoT) is a system that connects physical computing devices, sensors, software, and other technologies. Data can be collected, transferred, and exchanged with other devices over the network without requiring human interactions. One challenge the development of IoT faces is the existence of anomaly data in the network. Therefore, research on anomaly detection in the IoT environment has become popular and necessary in recent years. This survey provides an overview to understand the current progress of the different anomaly detection algorithms and how they can be applied in the context of the Internet of Things. In this survey, we categorize the widely used anomaly detection machine learning and deep learning techniques in IoT into three types: clustering-based, classification-based, and deep learning based. For each category, we introduce some state-of-the-art anomaly detection methods and evaluate the advantages and limitations of each technique.
translated by 谷歌翻译
通过无线网络互联设备数量和数据通信数量的显着增加引起了各种威胁,风险和安全问题。物联网(IoT)应用程序几乎部署在日常生活中的几乎所有领域,包括敏感环境。边缘计算范例通过在数据源附近移动计算处理来补充了IOT应用程序。在各种安全模型中,基于机器学习(ML)的入侵检测是最可想到的防御机制,用于打击已启用边缘的物联网中的异常行为。 ML算法用于将网络流量分类为正常和恶意攻击。入侵检测是网络安全领域的具有挑战性问题之一。研究界提出了许多入侵检测系统。然而,选择合适的算法涉及在启用边缘的物联网网络中提供安全性的挑战存在。在本文中,已经执行了传统机器学习分类算法的比较分析,以在Puparm工具上使用Jupyter对NSL-KDD数据集上的网络流量进行分类。可以观察到,多层感知(MLP)在输入和输出之间具有依赖性,并且更多地依赖于用于入侵检测的网络配置。因此,MLP可以更适合于基于边缘的物联网网络,其具有更好的培训时间为1.2秒,测试精度为79%。
translated by 谷歌翻译
在当前的Internet-Internet-More(IoT)部署中,依赖于TCP协议的传统IP网络和IOT特定协议的组合可用于将数据从源传输到目标。因此,使用TCP SYN攻击的TCP特定攻击,例如使用TCP SYN攻击的分布式拒绝服务(DDOS)是攻击者可以在网络物理系统(CPS)上使用的最合理的工具之一。这可以通过从其IOT子系统启动攻击来完成,这里被称为“CPS-IOT”,其潜在的传播到位于雾中的不同服务器和CP的云基础架构。该研究比较了监督,无监督和半监控机器学习算法的有效性,用于检测CPS-IOT中的DDOS攻击,特别是在通过因特网到网络空间到网络空间的数据传输期间。所考虑的算法广泛地分为二:i)检测算法,其包括逻辑回归(LGR),K型和人工神经网络(ANN)。我们还研究了半监督混合学习模型的有效性,它使用无监督的K-means来标记数据,然后将输出馈送到攻击检测的监督学习模型。 II。)预测算法 - LGR,内核RIDGE回归(KRR)和支持向量回归(SVR),用于预测即将发生的攻击。进行实验试验并获得结果表明,杂交模型能够达到100%的精度,零误报;虽然所有预测模型都能够实现超过94%的攻击预测准确性。
translated by 谷歌翻译
医学事物互联网(IOMT)允许使用传感器收集生理数据,然后将其传输到远程服务器,这使医生和卫生专业人员可以连续,永久地分析这些数据,并在早期阶段检测疾病。但是,使用无线通信传输数据将其暴露于网络攻击中,并且该数据的敏感和私人性质可能代表了攻击者的主要兴趣。在存储和计算能力有限的设备上使用传统的安全方法无效。另一方面,使用机器学习进行入侵检测可以对IOMT系统的要求提供适应性的安全响应。在这种情况下,对基于机器学习(ML)的入侵检测系统如何解决IOMT系统中的安全性和隐私问题的全面调查。为此,提供了IOMT的通用三层体系结构以及IOMT系统的安全要求。然后,出现了可能影响IOMT安全性的各种威胁,并确定基于ML的每个解决方案中使用的优势,缺点,方法和数据集。最后,讨论了在IOMT的每一层中应用ML的一些挑战和局限性,这些挑战和局限性可以用作未来的研究方向。
translated by 谷歌翻译
机器学习算法已被广泛用于入侵检测系统,包括多层感知器(MLP)。在这项研究中,我们提出了一个两阶段模型,该模型结合了桦木聚类算法和MLP分类器,以提高网络异常多分类的性能。在我们提出的方法中,我们首先将桦木或kmeans作为无监督的聚类算法应用于CICIDS-2017数据集,以预先分组数据。然后,将生成的伪标签作为基于MLP分类器的训练的附加功能添加。实验结果表明,使用桦木和K-均值聚类进行数据预组化可以改善入侵检测系统的性能。我们的方法可以使用桦木聚类实现多分类的99.73%的精度,这比使用独立的MLP模型的类似研究要好。
translated by 谷歌翻译
随着网络攻击和网络间谍活动的增长,如今需要更好,更强大的入侵检测系统(IDS)的需求更加有必要。 ID的基本任务是在检测Internet的攻击方面充当第一道防线。随着入侵者的入侵策略变得越来越复杂且难以检测,研究人员已经开始应用新颖的机器学习(ML)技术来有效地检测入侵者,从而保留互联网用户对整个互联网网络安全的信息和整体信任。在过去的十年中,基于ML和深度学习(DL)架构的侵入检测技术的爆炸激增,这些架构在各种基于网络安全的数据集上,例如DARPA,KDDCUP'99,NSL-KDD,CAIDA,CAIDA,CTU--- 13,UNSW-NB15。在这项研究中,我们回顾了当代文献,并提供了对不同类型的入侵检测技术的全面调查,该技术将支持向量机(SVMS)算法作为分类器。我们仅专注于在网络安全中对两个最广泛使用的数据集进行评估的研究,即KDDCUP'99和NSL-KDD数据集。我们提供了每种方法的摘要,确定了SVMS分类器的作用以及研究中涉及的所有其他算法。此外,我们以表格形式对每种方法进行了批判性综述,突出了所调查的每种方法的性能指标,优势和局限性。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
这项工作提供了可靠的nids(R-nids),一种新的机器学习方法(ML)的网络入侵检测系统(NIDS),允许ML模型在集成数据集上工作,从不同数据集中具有不同信息的学习过程。因此,R-NIDS针对更强大的模型的设计,比传统方法更好地概括。我们还提出了一个名为UNK21的新数据集。它是由三个最着名的网络数据集(UGR'16,USNW-NB15和NLS-KDD)构建,每个网络环境收集,使用不同的特征和类,通过使用数据聚合方法R-nids。在r-nids之后,在这项工作中,我们建议基于文献中的三个最常见的数据集的信息来构建两个着名的ML模型(一个线性和非线性的一个),用于NIDS评估中的三个,集成在UNK21中的那些。所提出的方法优惠展示了作为NIDS解决方案训练的两种ML模型的结果可以从这种方法中受益,在新提议的UNK21数据集上培训时能够更好地概括。此外,这些结果用统计工具仔细分析了对我们的结论提供了高度信心的统计工具。
translated by 谷歌翻译
连接设备的快速增长导致了新型网络安全威胁的扩散,称为零日攻击。传统的基于行为的ID依靠DNN来检测这些攻击。用于训练DNN的数据集的质量在检测性能中起着至关重要的作用,而代表性不足的样品导致性能不佳。在本文中,我们开发和评估DBN在连接设备网络中检测网络攻击方面的性能。CICIDS2017数据集用于训练和评估我们提出的DBN方法的性能。应用和评估了几种类平衡技术。最后,我们将方法与常规的MLP模型和现有的最新方法进行比较。我们提出的DBN方法显示出竞争性和有希望的结果,并且在培训数据集中攻击不足的攻击中的检测方面有显着改善。
translated by 谷歌翻译
Machine Learning (ML) approaches have been used to enhance the detection capabilities of Network Intrusion Detection Systems (NIDSs). Recent work has achieved near-perfect performance by following binary- and multi-class network anomaly detection tasks. Such systems depend on the availability of both (benign and malicious) network data classes during the training phase. However, attack data samples are often challenging to collect in most organisations due to security controls preventing the penetration of known malicious traffic to their networks. Therefore, this paper proposes a Deep One-Class (DOC) classifier for network intrusion detection by only training on benign network data samples. The novel one-class classification architecture consists of a histogram-based deep feed-forward classifier to extract useful network data features and use efficient outlier detection. The DOC classifier has been extensively evaluated using two benchmark NIDS datasets. The results demonstrate its superiority over current state-of-the-art one-class classifiers in terms of detection and false positive rates.
translated by 谷歌翻译
互联的战地信息共享设备的扩散,称为战场互联网(Iobt),介绍了几个安全挑战。 Iobt运营环境所固有的是对抗机器学习的实践,试图规避机器学习模型。这项工作探讨了在网络入侵检测系统设置中对异常检测的成本效益无监督学习和基于图形的方法的可行性,并利用了集合方法来监督异常检测问题的学习。我们在培训监督模型时纳入了一个现实的对抗性培训机制,以实现对抗性环境的强大分类性能。结果表明,无监督和基于图形的方法在通过两个级别的监督堆叠集合方法检测异常(恶意活动)时表现优于检测异常(恶意活动)。该模型由第一级别的三个不同的分类器组成,然后是第二级的天真贝叶斯或决策树分类器。对于所有测试水平的两个分类器,该模型将在0.97高于0.97以上的F1分数。值得注意的是,天真贝叶斯是最快的两个分类器平均1.12秒,而决策树保持最高的AUC评分为0.98。
translated by 谷歌翻译
Security issues are threatened in various types of networks, especially in the Internet of Things (IoT) environment that requires early detection. IoT is the network of real-time devices like home automation systems and can be controlled by open-source android devices, which can be an open ground for attackers. Attackers can access the network, initiate a different kind of security breach, and compromises network control. Therefore, timely detecting the increasing number of sophisticated malware attacks is the challenge to ensure the credibility of network protection. In this regard, we have developed a new malware detection framework, Deep Squeezed-Boosted and Ensemble Learning (DSBEL), comprised of novel Squeezed-Boosted Boundary-Region Split-Transform-Merge (SB-BR-STM) CNN and ensemble learning. The proposed S.T.M. block employs multi-path dilated convolutional, Boundary, and regional operations to capture the homogenous and heterogeneous global malicious patterns. Moreover, diverse feature maps are achieved using transfer learning and multi-path-based squeezing and boosting at initial and final levels to learn minute pattern variations. Finally, the boosted discriminative features are extracted from the developed deep SB-BR-STM CNN and provided to the ensemble classifiers (SVM, M.L.P., and AdaboostM1) to improve the hybrid learning generalization. The performance analysis of the proposed DSBEL framework and SB-BR-STM CNN against the existing techniques have been evaluated by the IOT_Malware dataset on standard performance measures. Evaluation results show progressive performance as 98.50% accuracy, 97.12% F1-Score, 91.91% MCC, 95.97 % Recall, and 98.42 % Precision. The proposed malware analysis framework is helpful for the timely detection of malicious activity and suggests future strategies.
translated by 谷歌翻译
入侵检测是汽车通信安全的重要防御措施。准确的框架检测模型有助于车辆避免恶意攻击。攻击方法的不确定性和多样性使此任务具有挑战性。但是,现有作品仅考虑本地功能或多功能的弱特征映射的限制。为了解决这些局限性,我们提出了一个新型的模型,用于通过车载通信流量(STC-IDS)的时空相关特征(STC-IDS)进行汽车入侵检测。具体而言,提出的模型利用编码检测体系结构。在编码器部分中,空间关系和时间关系是同时编码的。为了加强特征之间的关系,基于注意力的卷积网络仍然捕获空间和频道特征以增加接受场,而注意力LSTM则建立了以前的时间序列或关键字节的有意义的关系。然后将编码的信息传递给检测器,以产生有力的时空注意力特征并实现异常分类。特别是,构建了单帧和多帧模型,分别呈现不同的优势。在基于贝叶斯优化的自动超参数选择下,该模型经过培训以达到最佳性能。基于现实世界中车辆攻击数据集的广泛实证研究表明,STC-IDS优于基线方法,并且在保持效率的同时获得了较少的假警报率。
translated by 谷歌翻译
越来越多的工作已经认识到利用机器学习(ML)进步的重要性,以满足提取访问控制属性,策略挖掘,策略验证,访问决策等有效自动化的需求。在这项工作中,我们调查和总结了各种ML解决不同访问控制问题的方法。我们提出了ML模型在访问控制域中应用的新分类学。我们重点介绍当前的局限性和公开挑战,例如缺乏公共现实世界数据集,基于ML的访问控制系统的管理,了解黑盒ML模型的决策等,并列举未来的研究方向。
translated by 谷歌翻译
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems (NIDSs). Consequently, network interruptions and loss of sensitive data have occurred, which led to an active research area for improving NIDS technologies. In an analysis of related works, it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction (FR) and Machine Learning (ML) techniques on NIDS datasets. However, these datasets are different in feature sets, attack types, and network design. Therefore, this paper aims to discover whether these techniques can be generalised across various datasets. Six ML models are utilised: a Deep Feed Forward (DFF), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Decision Tree (DT), Logistic Regression (LR), and Naive Bayes (NB). The accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA), are evaluated using three benchmark datasets: UNSW-NB15, ToN-IoT and CSE-CIC-IDS2018. Although PCA and AE algorithms have been widely used, the determination of their optimal number of extracted dimensions has been overlooked. The results indicate that no clear FE method or ML model can achieve the best scores for all datasets. The optimal number of extracted dimensions has been identified for each dataset, and LDA degrades the performance of the ML models on two datasets. The variance is used to analyse the extracted dimensions of LDA and PCA. Finally, this paper concludes that the choice of datasets significantly alters the performance of the applied techniques. We believe that a universal (benchmark) feature set is needed to facilitate further advancement and progress of research in this field.
translated by 谷歌翻译
由于它们在各个域中的大量成功,深入的学习技术越来越多地用于设计网络入侵检测解决方案,该解决方案检测和减轻具有高精度检测速率和最小特征工程的未知和已知的攻击。但是,已经发现,深度学习模型容易受到可以误导模型的数据实例,以使所谓的分类决策不正确(对抗示例)。此类漏洞允许攻击者通过向恶意流量添加小的狡猾扰动来逃避检测并扰乱系统的关键功能。在计算机视觉域中广泛研究了深度对抗学习的问题;但是,它仍然是网络安全应用中的开放研究领域。因此,本调查探讨了在网络入侵检测领域采用对抗机器学习的不同方面的研究,以便为潜在解决方案提供方向。首先,调查研究基于它们对产生对抗性实例的贡献来分类,评估ML的NID对逆势示例的鲁棒性,并捍卫这些模型的这种攻击。其次,我们突出了调查研究中确定的特征。此外,我们讨论了现有的通用对抗攻击对NIDS领域的适用性,启动拟议攻击在现实世界方案中的可行性以及现有缓解解决方案的局限性。
translated by 谷歌翻译
机器学习(ML)和深度学习(DL)方法正在迅速采用,尤其是计算机网络安全,如欺诈检测,网络异常检测,入侵检测等等。然而,ML和DL基础模型缺乏透明度是其实施和由于其黑​​匣子性质而受到批评的主要障碍,即使具有如此巨大的结果。可解释的人工智能(XAI)是一个有希望的区域,可以通过给出解释和解释其产出来改善这些模型的可信度。如果ML和基于DL的模型的内部工作是可以理解的,那么它可以进一步帮助改善其性能。本文的目的是表明,Xai如何用于解释DL模型的结果,在这种情况下是AutoEncoder。并且,根据解释,我们改善了计算机网络异常检测的性能。基于福谢值的内核形状方法用作新颖的特征选择技术。此方法用于仅识别实际上导致该组攻击/异常实例的异常行为的那些功能。稍后,这些功能集用于培训和验证AutoEncoder,而是仅在良性数据上验证。最后,基于特征选择方法提出的其他两个模型的内置Shap_Model始终。整个实验是在最新的Cicids2017网络数据集的子集上进行的。 Shap_Model的总体精度和AUC分别为94%和0.969。
translated by 谷歌翻译