机器学习算法已被广泛用于入侵检测系统,包括多层感知器(MLP)。在这项研究中,我们提出了一个两阶段模型,该模型结合了桦木聚类算法和MLP分类器,以提高网络异常多分类的性能。在我们提出的方法中,我们首先将桦木或kmeans作为无监督的聚类算法应用于CICIDS-2017数据集,以预先分组数据。然后,将生成的伪标签作为基于MLP分类器的训练的附加功能添加。实验结果表明,使用桦木和K-均值聚类进行数据预组化可以改善入侵检测系统的性能。我们的方法可以使用桦木聚类实现多分类的99.73%的精度,这比使用独立的MLP模型的类似研究要好。
translated by 谷歌翻译
网络流量数据是不同网络协议下不同数据字节数据包的组合。这些流量数据包具有复杂的时变非线性关系。现有的最先进的方法通过基于相关性和使用提取空间和时间特征的混合分类技术将特征融合到多个子集中,通过将特征融合到多个子集中来提高这一挑战。这通常需要高计算成本和手动支持,这限制了它们的网络流量的实时处理。为了解决这个问题,我们提出了一种基于协方差矩阵的新型新颖特征提取方法,提取网络流量数据的空间时间特征来检测恶意网络流量行为。我们所提出的方法中的协方差矩阵不仅自然地对不同网络流量值之间的相互关系进行了编码,而且还具有落在riemannian歧管中的明确的几何形状。利莫曼歧管嵌入距离度量,便于提取用于检测恶意网络流量的判别特征。我们在NSL-KDD和UNSW-NB15数据集上进行了评估模型,并显示了我们提出的方法显着优于与数据集上的传统方法和其他现有研究。
translated by 谷歌翻译
Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.
translated by 谷歌翻译
连接设备的快速增长导致了新型网络安全威胁的扩散,称为零日攻击。传统的基于行为的ID依靠DNN来检测这些攻击。用于训练DNN的数据集的质量在检测性能中起着至关重要的作用,而代表性不足的样品导致性能不佳。在本文中,我们开发和评估DBN在连接设备网络中检测网络攻击方面的性能。CICIDS2017数据集用于训练和评估我们提出的DBN方法的性能。应用和评估了几种类平衡技术。最后,我们将方法与常规的MLP模型和现有的最新方法进行比较。我们提出的DBN方法显示出竞争性和有希望的结果,并且在培训数据集中攻击不足的攻击中的检测方面有显着改善。
translated by 谷歌翻译
监督学习已被广​​泛用于攻击分类,需要高质量的数据和标签。但是,数据通常是不平衡的,很难获得足够的注释。此外,有监督的模型应遵守现实世界的部署问题,例如防御看不见的人造攻击。为了应对挑战,我们提出了一个半监督的细粒攻击分类框架,该框架由编码器和两个分支机构结构组成,并且该框架可以推广到不同的监督模型。具有残留连接的多层感知器用作提取特征并降低复杂性的编码器。提出了复发原型模块(RPM)以半监督的方式有效地训练编码器。为了减轻数据不平衡问题,我们将重量任务一致性(WTC)引入RPM的迭代过程中,通过将较大的权重分配给损失函数中较少样本的类别。此外,为了应对现实世界部署中的新攻击,我们提出了一种主动调整重新采样(AAR)方法,该方法可以更好地发现看不见的样本数据的分布并调整编码器的参数。实验结果表明,我们的模型优于最先进的半监督攻击检测方法,分类精度提高了3%,训练时间降低了90%。
translated by 谷歌翻译
Cyber intrusion attacks that compromise the users' critical and sensitive data are escalating in volume and intensity, especially with the growing connections between our daily life and the Internet. The large volume and high complexity of such intrusion attacks have impeded the effectiveness of most traditional defence techniques. While at the same time, the remarkable performance of the machine learning methods, especially deep learning, in computer vision, had garnered research interests from the cyber security community to further enhance and automate intrusion detections. However, the expensive data labeling and limitation of anomalous data make it challenging to train an intrusion detector in a fully supervised manner. Therefore, intrusion detection based on unsupervised anomaly detection is an important feature too. In this paper, we propose a three-stage deep learning anomaly detection based network intrusion attack detection framework. The framework comprises an integration of unsupervised (K-means clustering), semi-supervised (GANomaly) and supervised learning (CNN) algorithms. We then evaluated and showed the performance of our implemented framework on three benchmark datasets: NSL-KDD, CIC-IDS2018, and TON_IoT.
translated by 谷歌翻译
物联网(物联网)通过通过互联网控制设备/事物来改变生活。物联网已为日常问题指定了许多智能解决方案,将网络物理系统(CPS)和其他经典领域转化为智能区域。构成物联网的大多数边缘设备具有极低的处理能力。为了降低物联网网络,攻击者可以利用这些设备进行各种网络攻击。此外,随着越来越多的物联网设备的添加,新的和未知威胁的潜力呈指数增长。因此,必须开发针对可以识别此类威胁的物联网网络的智能安全框架。在本文中,我们开发了一种无监督的集合学习模型,该模型能够从未标记的数据集中检测物联网中的新或未知攻击。系统生成的标记数据集用于训练深度学习模型以检测IoT网络攻击。此外,研究提出了一种特征选择机制,用于识别数据集中最相关的方面以检测攻击。该研究表明,建议的模型能够识别未标记的物联网网络数据集和DBN(深信念网络)的表现优于其他模型,检测准确性为97.5%,错误警报率为2.3%,当使用由标记的数据集进行培训时建议的方法。
translated by 谷歌翻译
随着网络攻击和网络间谍活动的增长,如今需要更好,更强大的入侵检测系统(IDS)的需求更加有必要。 ID的基本任务是在检测Internet的攻击方面充当第一道防线。随着入侵者的入侵策略变得越来越复杂且难以检测,研究人员已经开始应用新颖的机器学习(ML)技术来有效地检测入侵者,从而保留互联网用户对整个互联网网络安全的信息和整体信任。在过去的十年中,基于ML和深度学习(DL)架构的侵入检测技术的爆炸激增,这些架构在各种基于网络安全的数据集上,例如DARPA,KDDCUP'99,NSL-KDD,CAIDA,CAIDA,CTU--- 13,UNSW-NB15。在这项研究中,我们回顾了当代文献,并提供了对不同类型的入侵检测技术的全面调查,该技术将支持向量机(SVMS)算法作为分类器。我们仅专注于在网络安全中对两个最广泛使用的数据集进行评估的研究,即KDDCUP'99和NSL-KDD数据集。我们提供了每种方法的摘要,确定了SVMS分类器的作用以及研究中涉及的所有其他算法。此外,我们以表格形式对每种方法进行了批判性综述,突出了所调查的每种方法的性能指标,优势和局限性。
translated by 谷歌翻译
机器学习(ML)和深度学习(DL)方法正在迅速采用,尤其是计算机网络安全,如欺诈检测,网络异常检测,入侵检测等等。然而,ML和DL基础模型缺乏透明度是其实施和由于其黑​​匣子性质而受到批评的主要障碍,即使具有如此巨大的结果。可解释的人工智能(XAI)是一个有希望的区域,可以通过给出解释和解释其产出来改善这些模型的可信度。如果ML和基于DL的模型的内部工作是可以理解的,那么它可以进一步帮助改善其性能。本文的目的是表明,Xai如何用于解释DL模型的结果,在这种情况下是AutoEncoder。并且,根据解释,我们改善了计算机网络异常检测的性能。基于福谢值的内核形状方法用作新颖的特征选择技术。此方法用于仅识别实际上导致该组攻击/异常实例的异常行为的那些功能。稍后,这些功能集用于培训和验证AutoEncoder,而是仅在良性数据上验证。最后,基于特征选择方法提出的其他两个模型的内置Shap_Model始终。整个实验是在最新的Cicids2017网络数据集的子集上进行的。 Shap_Model的总体精度和AUC分别为94%和0.969。
translated by 谷歌翻译
The Internet of Things (IoT) is a system that connects physical computing devices, sensors, software, and other technologies. Data can be collected, transferred, and exchanged with other devices over the network without requiring human interactions. One challenge the development of IoT faces is the existence of anomaly data in the network. Therefore, research on anomaly detection in the IoT environment has become popular and necessary in recent years. This survey provides an overview to understand the current progress of the different anomaly detection algorithms and how they can be applied in the context of the Internet of Things. In this survey, we categorize the widely used anomaly detection machine learning and deep learning techniques in IoT into three types: clustering-based, classification-based, and deep learning based. For each category, we introduce some state-of-the-art anomaly detection methods and evaluate the advantages and limitations of each technique.
translated by 谷歌翻译
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems (NIDSs). Consequently, network interruptions and loss of sensitive data have occurred, which led to an active research area for improving NIDS technologies. In an analysis of related works, it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction (FR) and Machine Learning (ML) techniques on NIDS datasets. However, these datasets are different in feature sets, attack types, and network design. Therefore, this paper aims to discover whether these techniques can be generalised across various datasets. Six ML models are utilised: a Deep Feed Forward (DFF), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Decision Tree (DT), Logistic Regression (LR), and Naive Bayes (NB). The accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA), are evaluated using three benchmark datasets: UNSW-NB15, ToN-IoT and CSE-CIC-IDS2018. Although PCA and AE algorithms have been widely used, the determination of their optimal number of extracted dimensions has been overlooked. The results indicate that no clear FE method or ML model can achieve the best scores for all datasets. The optimal number of extracted dimensions has been identified for each dataset, and LDA degrades the performance of the ML models on two datasets. The variance is used to analyse the extracted dimensions of LDA and PCA. Finally, this paper concludes that the choice of datasets significantly alters the performance of the applied techniques. We believe that a universal (benchmark) feature set is needed to facilitate further advancement and progress of research in this field.
translated by 谷歌翻译
Machine Learning (ML) approaches have been used to enhance the detection capabilities of Network Intrusion Detection Systems (NIDSs). Recent work has achieved near-perfect performance by following binary- and multi-class network anomaly detection tasks. Such systems depend on the availability of both (benign and malicious) network data classes during the training phase. However, attack data samples are often challenging to collect in most organisations due to security controls preventing the penetration of known malicious traffic to their networks. Therefore, this paper proposes a Deep One-Class (DOC) classifier for network intrusion detection by only training on benign network data samples. The novel one-class classification architecture consists of a histogram-based deep feed-forward classifier to extract useful network data features and use efficient outlier detection. The DOC classifier has been extensively evaluated using two benchmark NIDS datasets. The results demonstrate its superiority over current state-of-the-art one-class classifiers in terms of detection and false positive rates.
translated by 谷歌翻译
Network traffic classification is the basis of many network security applications and has attracted enough attention in the field of cyberspace security. Existing network traffic classification based on convolutional neural networks (CNNs) often emphasizes local patterns of traffic data while ignoring global information associations. In this paper, we propose a MLP-Mixer based multi-view multi-label neural network for network traffic classification. Compared with the existing CNN-based methods, our method adopts the MLP-Mixer structure, which is more in line with the structure of the packet than the conventional convolution operation. In our method, the packet is divided into the packet header and the packet body, together with the flow features of the packet as input from different views. We utilize a multi-label setting to learn different scenarios simultaneously to improve the classification performance by exploiting the correlations between different scenarios. Taking advantage of the above characteristics, we propose an end-to-end network traffic classification method. We conduct experiments on three public datasets, and the experimental results show that our method can achieve superior performance.
translated by 谷歌翻译
作为智能车辆控制系统的中心神经,车载网络总线对于车辆驾驶的安全至关重要。车载网络的最佳标准之一是控制器区域网络(CAN BUS)协议。但是,由于缺乏安全机制,CAN总线被设计为容易受到各种攻击的影响。为了增强车载网络的安全性并根据大量的CAN网络流量数据和提取的有价值的功能来促进该领域的研究,本研究全面比较了完全监督的机器学习与半监督的机器学习方法可以发信息异常检测。评估了传统的机器学习模型(包括单个分类器和集合模型)和基于神经网络的深度学习模型。此外,这项研究提出了一种基于自动编码器的深度自动编码器的半监督学习方法,该方法适用于CAN传达异常检测,并验证了其优于其他半监督方法的优势。广泛的实验表明,全面监督的方法通常优于半监督者,因为它们使用更多信息作为输入。通常,开发的基于XGBoost的模型以最佳准确性(98.65%),精度(0.9853)和Roc AUC(0.9585)击败了文献中报道的其他方法。
translated by 谷歌翻译
在当前的Internet-Internet-More(IoT)部署中,依赖于TCP协议的传统IP网络和IOT特定协议的组合可用于将数据从源传输到目标。因此,使用TCP SYN攻击的TCP特定攻击,例如使用TCP SYN攻击的分布式拒绝服务(DDOS)是攻击者可以在网络物理系统(CPS)上使用的最合理的工具之一。这可以通过从其IOT子系统启动攻击来完成,这里被称为“CPS-IOT”,其潜在的传播到位于雾中的不同服务器和CP的云基础架构。该研究比较了监督,无监督和半监控机器学习算法的有效性,用于检测CPS-IOT中的DDOS攻击,特别是在通过因特网到网络空间到网络空间的数据传输期间。所考虑的算法广泛地分为二:i)检测算法,其包括逻辑回归(LGR),K型和人工神经网络(ANN)。我们还研究了半监督混合学习模型的有效性,它使用无监督的K-means来标记数据,然后将输出馈送到攻击检测的监督学习模型。 II。)预测算法 - LGR,内核RIDGE回归(KRR)和支持向量回归(SVR),用于预测即将发生的攻击。进行实验试验并获得结果表明,杂交模型能够达到100%的精度,零误报;虽然所有预测模型都能够实现超过94%的攻击预测准确性。
translated by 谷歌翻译
互联的战地信息共享设备的扩散,称为战场互联网(Iobt),介绍了几个安全挑战。 Iobt运营环境所固有的是对抗机器学习的实践,试图规避机器学习模型。这项工作探讨了在网络入侵检测系统设置中对异常检测的成本效益无监督学习和基于图形的方法的可行性,并利用了集合方法来监督异常检测问题的学习。我们在培训监督模型时纳入了一个现实的对抗性培训机制,以实现对抗性环境的强大分类性能。结果表明,无监督和基于图形的方法在通过两个级别的监督堆叠集合方法检测异常(恶意活动)时表现优于检测异常(恶意活动)。该模型由第一级别的三个不同的分类器组成,然后是第二级的天真贝叶斯或决策树分类器。对于所有测试水平的两个分类器,该模型将在0.97高于0.97以上的F1分数。值得注意的是,天真贝叶斯是最快的两个分类器平均1.12秒,而决策树保持最高的AUC评分为0.98。
translated by 谷歌翻译
As the number of heterogenous IP-connected devices and traffic volume increase, so does the potential for security breaches. The undetected exploitation of these breaches can bring severe cybersecurity and privacy risks. Anomaly-based \acp{IDS} play an essential role in network security. In this paper, we present a practical unsupervised anomaly-based deep learning detection system called ARCADE (Adversarially Regularized Convolutional Autoencoder for unsupervised network anomaly DEtection). With a convolutional \ac{AE}, ARCADE automatically builds a profile of the normal traffic using a subset of raw bytes of a few initial packets of network flows so that potential network anomalies and intrusions can be efficiently detected before they cause more damage to the network. ARCADE is trained exclusively on normal traffic. An adversarial training strategy is proposed to regularize and decrease the \ac{AE}'s capabilities to reconstruct network flows that are out-of-the-normal distribution, thereby improving its anomaly detection capabilities. The proposed approach is more effective than state-of-the-art deep learning approaches for network anomaly detection. Even when examining only two initial packets of a network flow, ARCADE can effectively detect malware infection and network attacks. ARCADE presents 20 times fewer parameters than baselines, achieving significantly faster detection speed and reaction time.
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
入侵检测是提供计算机网络安全性的重要机制之一。由于攻击的增加以及对医学,商业和工程等其他领域的依赖不断增加,因此通过网络提供服务并维持网络安全已成为一个重大问题。入侵检测系统(IDS)的目的是开发能够将常规通信与异常沟通区分开的模型,并采取必要的动作。在该领域的不同方法中,人工神经网络(ANN)已被广泛使用。但是,基于ANN的ID遇到了两个主要问题:低检测精度和弱检测稳定性。为了克服这些问题,本文提出了一种基于深神经网络ANS支持向量机分类器的新方法,该方法受到“分裂和征服”哲学的启发。提出的模型以更好的准确性来预测攻击,以进行入侵检测而不是相似的方法。对于我们的实证研究,我们利用了KDD99数据集。我们的实验结果表明,新方法提高了95.4%的分类精度。
translated by 谷歌翻译
本文研究了图形神经网络(GNNS)应用程序,以进行自我监督的网络入侵和异常检测。 GNN是一种基于图的数据的深度学习方法,它将图形结构纳入学习以概括图表和输出嵌入。由于网络流量自然基于图,因此GNN非常适合分析和学习网络行为。基于GNN的网络入侵检测系统(NIDSS)的最新实现很大程度上依赖于标记的网络流量,这不仅可以限制输入流量的数量和结构,还可以限制NIDSS的潜力来适应看不见的攻击。为了克服这些限制,我们提出了异常-E,这是GNN的入侵和异常检测方法,该方法在自我监督过程中利用边缘特征和图形拓扑结构。据我们所知,这种方法是第一种成功且实用的方法来进行网络入侵检测,该方法利用网络流动在自我监督,边缘利用GNN中。两个现代基准NIDS数据集的实验结果不仅清楚地显示了使用Anomal-E嵌入而不是原始功能的改进,而且还显示了对野生网络流量检测的潜在异常-E具有的潜在异常功能。
translated by 谷歌翻译