无监督的域适应性(UDA)已被广泛用于将知识从标记的源域转移到未标记的目标域,以抵消在新域中标记的难度。常规解决方案的培训通常依赖于源和目标域数据的存在。但是,源域和经过训练的模型参数中大规模和标记的数据的隐私可能成为跨中心/域协作的主要关注点。在这项工作中,为了解决这个问题,我们为UDA提出了一个实用的解决方案,以使用仅在源域中训练的黑框分割模型,而不是原始源数据或白盒源模型。具体而言,我们求助于具有指数混合衰减(EMD)的知识蒸馏方案,以逐步学习针对目标的表示。另外,无监督的熵最小化进一步应用于目标域置信度的正则化。我们在Brats 2018数据库上评估了我们的框架,并以White-Box源模型适应方法在标准杆上实现了性能。
translated by 谷歌翻译
无监督的域适应性(UDA)是一个至关重要的协议,用于迁移从标记的源域中学到的信息,以促进未标记的异质目标域中的实现。尽管UDA通常经过来自两个域的数据的共同培训,但由于对患者数据隐私或知识产权的担忧,访问标记的源域数据通常受到限制。为了避开此问题,我们提出了“现成的(OS)” UDA(OSUDA),针对图像分割,通过调整在源域中训练的OS进行调整到目标域,在适应中没有源域数据的情况下, 。为了实现这一目标,我们旨在开发新的批准归一化(BN)统计适应框架。特别是,我们通过指数型衰减策略逐渐适应了特定于域的低阶BN统计数据,例如平均值和差异,同时明确执行可共享的可共享高阶BN统计的一致性,例如,扩展和转移因子缩放和转移因子。 ,通过我们的优化目标。我们还通过低阶统计差异和缩放因素来自适应量化通道的可传递性,以评估每个通道的重要性。记忆一致的自我训练策略利用可靠的伪标签来稳定,有效的无监督适应。我们评估了基于OSUDA的跨模式和交叉型脑肿瘤分割和心脏MR到CT分割任务的框架。我们的实验结果表明,我们的内存一致性的OSUDA的性能优于现有的 - 源 - 删除的UDA方法,并且具有与源数据的UDA方法相似的性能。
translated by 谷歌翻译
通过在未标记的目标域中应用良好的模型,通过对标记的源域的监督应用了良好的模型,已经通过对未标记的目标域应用了良好的模型,对无监督的域适应(UDA)进行了大量探索,以减轻源和目标域之间的域变化。然而,最近的文献表明,在存在重大领域变化的情况下,性能仍然远非令人满意。但是,由于绩效的实质性增长,划定一些目标样本通常是易于管理的,尤其是值得的。受此启发的启发,我们旨在开发半监督域的适应性(SSDA)进行医学图像分割,这在很大程度上没有被置于脑海中。因此,除了以统一的方式使用未标记的目标数据外,我们建议利用标记的源和目标域数据。具体而言,我们提出了一种新型的不对称共同训练(ACT)框架,以整合这些子集并避免源域数据的统治。遵循分歧和纠纷策略,我们将SSDA的标签监督分为两个不对称的子任务,包括半监督学习(SSL)和UDA,并利用两个细分市场的不同知识来考虑在两个部分之间的区别,以考虑到不同的知识。来源和目标标签监督。然后,在两个模块中学习的知识与ACT自适应地整合,通过基于置信度的伪标签进行迭代教学。此外,伪标签噪声与指数混合衰减方案可以很好地控制,以进行平滑传播。使用BRATS18数据库进行跨模式脑肿瘤MRI分割任务的实验表明,即使标记有限的目标样本,ACT也对UDA和最先进的SSDA方法产生了明显的改进,并接近了受监督的联合训练的“上限” 。
translated by 谷歌翻译
未经监督的域适应(UDA)在两个明显不同的域之间学习高级语义对齐是一个至关重要的又具有挑战性的任务。〜在此目的,在这项工作中,我们建议利用低级边缘信息来促进适应作为前体任务具有小的跨域间隙,与语义分割相比具有小的跨域间隙。〜精确的轮廓然后提供用于引导语义适应的空间信息。更具体地,我们提出了一种多任务框架来学习轮廓调整网络以及语义分割适应网络,其将磁共振成像(MRI)切片及其初始边缘图作为输入。〜这两个网络是共同训练的源域标签,以及特征和边缘地图级对冲学习进行跨域对齐。此外,还包含自熵最小化,以进一步提高分割性能。我们在Brats2018数据库中评估了脑肿瘤的跨态分割的框架,呈现了与竞争方法相比我们方法的有效性和优越性。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译
为了缓解标签的负担,无监督的域适应(UDA)旨在将知识传输到新的未标记数据集(目标)中的标记数据集(源)。尽管进展令人印象深刻,但先前的方法总是需要访问原始源数据,并开发数据相关的对准方法以以转换的学习方式识别目标样本,这可能会从源头中提高隐私问题。几个最近的研究通过利用来自源域的训练有素的白盒模型来替代解决方案,然而,它仍可能通过生成的对抗性学习泄漏原始数据。本文研究了UDA的实用和有趣的设置,其中仅在目标域中的适应期间提供了黑盒源模型(即,仅可用网络预测)。为了解决这个问题,我们提出了一个名为蒸馏和微调(用餐)的新的两步知识适应框架。考虑到目标数据结构,用餐首先将知识从源预测器蒸馏到定制的目标模型,然后微调蒸馏模型以进一步适合目标域。此外,神经网络不需要在用餐中的域中相同,甚至允许有效地适应低资源设备。三个UDA场景(即单源,多源和部分集)的经验结果确认,与最先进的数据相关的方法相比,该用途达到了高竞争力的性能。代码可用于\ url {https://github.com/tim-learn/dine/}。
translated by 谷歌翻译
深度学习已成为解决不同领域中现实世界中问题的首选方法,部分原因是它能够从数据中学习并在广泛的应用程序上实现令人印象深刻的性能。但是,它的成功通常取决于两个假设:(i)精确模型拟合需要大量标记的数据集,并且(ii)培训和测试数据是独立的且分布相同的。因此,不能保证它在看不见的目标域上的性能,尤其是在适应阶段遇到分布数据的数据时。目标域中数据的性能下降是部署深层神经网络的关键问题,这些网络已成功地在源域中的数据训练。通过利用标记的源域数据和未标记的目标域数据来执行目标域中的各种任务,提出了无监督的域适应(UDA)来对抗这一点。 UDA在自然图像处理,视频分析,自然语言处理,时间序列数据分析,医学图像分析等方面取得了令人鼓舞的结果。在本综述中,作为一个快速发展的主题,我们对其方法和应用程序进行了系统的比较。此外,还讨论了UDA与其紧密相关的任务的联系,例如域的概括和分布外检测。此外,突出显示了当前方法和可能有希望的方向的缺陷。
translated by 谷歌翻译
实现域适应是有价值的,以将学习知识从标记为CT数据集传输到腹部多器官分段的目标未标记的MR DataSet。同时,非常希望避免目标数据集的高注重成本并保护源数据集的隐私。因此,我们提出了一种有效的无核心无监督域适应方法,用于跨型号腹部多器官分段而不访问源数据集。所提出的框架的过程包括两个阶段。在第一阶段,特征映射统计损失用于对准顶部分段网络中的源和目标特征的分布,并使用熵最小化损耗来鼓励高席位细分。从顶部分段网络输出的伪标签用于指导样式补偿网络生成类似源图像。从中间分割网络输出的伪标签用于监督所需模型的学习(底部分段网络)。在第二阶段,循环学习和像素自适应掩模细化用于进一步提高所需模型的性能。通过这种方法,我们在肝脏,肾脏,左肾肾脏和脾脏的分割中实现了令人满意的性能,骰子相似系数分别为0.884,0.891,0.864和0.911。此外,当存在目标注释数据时,所提出的方法可以很容易地扩展到情况。该性能在平均骰子相似度系数的0.888至0.922增加到0.888至0.922,靠近监督学习(0.929),只有一个标记的MR卷。
translated by 谷歌翻译
受益于从特定情况(源)收集的相当大的像素级注释,训练有素的语义分段模型表现得非常好,但由于大域移位而导致的新情况(目标)失败。为了缓解域间隙,先前的跨域语义分段方法始终在域对齐期间始终假设源数据和目标数据的共存。但是,在实际方案中访问源数据可能会引发隐私问题并违反知识产权。为了解决这个问题,我们专注于一个有趣和具有挑战性的跨域语义分割任务,其中仅向目标域提供训练源模型。具体地,我们提出了一种称为ATP的统一框架,其包括三种方案,即特征对准,双向教学和信息传播。首先,我们设计了课程熵最小化目标,以通过提供的源模型隐式对准目标功能与看不见的源特征。其次,除了vanilla自我训练中的正伪标签外,我们是第一个向该领域引入负伪标签的,并开发双向自我训练策略,以增强目标域中的表示学习。最后,采用信息传播方案来通过伪半监督学习进一步降低目标域内的域内差异。综合与跨城市驾驶数据集的广泛结果验证\ TextBF {ATP}产生最先进的性能,即使是需要访问源数据的方法。
translated by 谷歌翻译
域的适应性旨在使标记的源域和未标记的目标域对齐,并且大多数现有方法都认为源数据是可访问的。不幸的是,这种范式引起了数据隐私和安全性的关注。最近的研究试图通过无源设置来消除这些问题,该设置将源训练的模型适应目标域而不暴露源数据。但是,由于对源模型的对抗性攻击,无源范式仍然有数据泄漏的风险。因此,提出了黑框设置,其中只能利用源模型的输出。在本文中,我们同时介绍了无源的适应和黑盒适应性,提出了一种新的方法,即来自频率混合和相互学习(FMML)的“更好的目标表示”。具体而言,我们引入了一种新的数据增强技术作为频率混音,该技术突出了插值中与任务相关的对象,从而增强了目标模型的类符合性和线性行为。此外,我们引入了一种称为相互学习的网络正则化方法,以介绍域的适应问题。它通过自我知识蒸馏传输目标模型内部的知识,从而通过学习多尺度目标表示来减轻对源域的过度拟合。广泛的实验表明,我们的方法在两种设置下都可以在几个基准数据集上实现最新性能。
translated by 谷歌翻译
最小化分布匹配损失是在图像分类的背景下的域适应的原则方法。但是,在适应分割网络中,它基本上被忽略,目前由对抗模型主导。我们提出了一系列损失函数,鼓励在网络输出空间中直接核心密度匹配,直至从未标记的输入计算的一些几何变换。我们的直接方法而不是使用中间域鉴别器,而不是使用单一损失统一分发匹配和分段。因此,它通过避免额外的对抗步骤来简化分段适应,同时提高培训的质量,稳定性和效率。我们通过网络输出空间的对抗培训使我们对最先进的分段适应的方法并置。在对不同磁共振图像(MRI)方式相互调整脑细分的具有挑战性的任务中,我们的方法在准确性和稳定性方面取得了明显的结果。
translated by 谷歌翻译
通过采用卷积神经网络(CNN)进行电路结构的分割,深度学习在具有挑战性的电路注释任务中取得了巨大的成功。深度学习方法需要大量手动注释的培训数据才能实现良好的性能,如果在给定数据集上培训的深度学习模型被应用于其他数据集,则可能导致性能降解。这通常称为电路注释的域移位问题,这源于不同图像数据集的分布的较大变化。可以从单个设备中的不同设备或不同层获得不同的图像数据集。为了解决域移位问题,我们提出了直方图门控图像翻译(HGIT),这是一个无监督的域适应框架,将图像从给定的源数据集转换为目标数据集的域,并利用转换的图像来训练段网络。具体而言,我们的HGIT执行基于生成的对抗网络(GAN)的图像翻译,并利用直方图统计数据进行数据策划。实验是在适应三个不同目标数据集(无标签的单个标记源数据集上进行的,并评估了每个目标数据集的分割性能。我们已经证明,与报道的域适应技术相比,我们的方法达到了最佳性能,并且还可以合理地接近完全监督的基准。
translated by 谷歌翻译
卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释数据集来协助培训,这有可能改善模型的性能。然而,由于目标结构的外观不同甚至成像方式,跨解剖结构域的转移进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应(CS-CADA)的对比度半监督学习,该学习适应一个模型以在目标结构域中细分相似的结构,这仅需要通过利用一组现有现有的现有的目标域中的限制注释源域中相似结构的注释图像。我们使用特定领域的批归归量表(DSBN)来单独地标准化两个解剖域的特征图,并提出跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均值老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在视网膜血管图像和心脏MR图像的帮助下,在X射线图像中准确分割冠状动脉,并借助底底图像,分别仅给定目标域中的少量注释。
translated by 谷歌翻译
对于医学图像分割,想象一下,如果仅使用源域中的MR图像训练模型,它的性能如何直接在目标域中进行CT图像?这种设置,即概括的跨模块分割,拥有其临床潜力,其比其他相关设置更具挑战性,例如域适应。为实现这一目标,我们本文通过利用在我们更广泛的分割期间利用增强的源相似和源不同的图像来提出新的双标准化模块。具体而言,给定单个源域,旨在模拟未经证明的目标域中可能的外观变化,我们首先利用非线性变换来增加源相似和源不同的图像。然后,为了充分利用这两种类型的增强,我们所提出的基于双重定量的模型采用共享骨干但独立的批量归一化层,用于单独归一化。之后,我们提出了一种基于风格的选择方案来自动选择测试阶段的适当路径。在三个公开可用的数据集上进行了广泛的实验,即Brats,跨型心脏和腹部多器官数据集表明我们的方法优于其他最先进的域概括方法。
translated by 谷歌翻译
无监督的域适应性(UDA)是解决一个问题的关键技术之一,很难获得监督学习所需的地面真相标签。通常,UDA假设在培训过程中可以使用来自源和目标域中的所有样本。但是,在涉及数据隐私问题的应用下,这不是现实的假设。为了克服这一限制,最近提出了无源数据的UDA,即无源无监督的域适应性(SFUDA)。在这里,我们提出了一种用于医疗图像分割的SFUDA方法。除了在UDA中通常使用的熵最小化方法外,我们还引入了一个损失函数,以避免目标域中的特征规范和在保留目标器官的形状约束之前。我们使用数据集进行实验,包括多种类型的源目标域组合,以显示我们方法的多功能性和鲁棒性。我们确认我们的方法优于所有数据集中的最先进。
translated by 谷歌翻译
我们提出了一种无监督的域适应(UDA)方法,用于白质超强度(WMH)分割,其使用具有不确定性依赖标签改进的自我训练(果馅乳头)。最近被引入自我培训作为UDA的高效方法,这是基于自我产生的伪标签。但是,伪标签可能非常嘈杂,因此模型性能恶化。我们建议预测伪标签的不确定性,并将其整合在培训过程中,以不确定性导向的损失功能来突出以高确定性突出标签。通过在伪标签生成中结合现有方法的分割输出,进一步改善了馅馅乳头片,其显示为WMH分割的高稳健性。在我们的实验中,我们评估具有标准U-Net和具有更高接受领域的修改网络的批发力。我们的结果在数据集中的WMH分割展示了标准自我训练方面的恒星的显着改善。
translated by 谷歌翻译
分割前庭施瓦瘤瘤(VS)肿瘤的自动方法和来自磁共振成像(MRI)的耳蜗对VS治疗计划至关重要。虽然监督方法在VS分割中取得了令人满意的性能,但他们需要专家的完整注释,这是费力且耗时的。在这项工作中,我们的目标是在无监督的域适应设置中解决VS和Cochlea分段问题。我们所提出的方法利用了图像级域对齐,以最大限度地减少域发散和半监督培训,以进一步提高性能。此外,我们建议通过嘈杂的标签校正熔断从多个模型预测的标签。我们对挑战验证排行榜的结果表明,我们无人监督的方法取得了有前途的与科技分割性能,平均骰子得分为0.8261 $ \ PM $ 0.0416;肿瘤的平均骰子值为0.8302 $ \ PM $ 0.0772。这与基于弱监督的方法相当。
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
在过去的十年中,许多深入学习模型都受到了良好的培训,并在各种机器智能领域取得了巨大成功,特别是对于计算机视觉和自然语言处理。为了更好地利用这些训练有素的模型在域内或跨域转移学习情况下,提出了知识蒸馏(KD)和域适应(DA)并成为研究亮点。他们旨在通过原始培训数据从训练有素的模型转移有用的信息。但是,由于隐私,版权或机密性,原始数据并不总是可用的。最近,无数据知识转移范式吸引了吸引人的关注,因为它涉及从训练有素的模型中蒸馏宝贵的知识,而无需访问培训数据。特别是,它主要包括无数据知识蒸馏(DFKD)和源无数据域适应(SFDA)。一方面,DFKD旨在将域名域内知识从一个麻烦的教师网络转移到一个紧凑的学生网络,以进行模型压缩和有效推论。另一方面,SFDA的目标是重用存储在训练有素的源模型中的跨域知识并将其调整为目标域。在本文中,我们对知识蒸馏和无监督域适应的视角提供了全面的数据知识转移,以帮助读者更好地了解目前的研究状况和想法。分别简要审查了这两个领域的应用和挑战。此外,我们对未来研究的主题提供了一些见解。
translated by 谷歌翻译
Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation in visual perception for self-driving cars, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.
translated by 谷歌翻译