无监督的域适应性(UDA)是一个至关重要的协议,用于迁移从标记的源域中学到的信息,以促进未标记的异质目标域中的实现。尽管UDA通常经过来自两个域的数据的共同培训,但由于对患者数据隐私或知识产权的担忧,访问标记的源域数据通常受到限制。为了避开此问题,我们提出了“现成的(OS)” UDA(OSUDA),针对图像分割,通过调整在源域中训练的OS进行调整到目标域,在适应中没有源域数据的情况下, 。为了实现这一目标,我们旨在开发新的批准归一化(BN)统计适应框架。特别是,我们通过指数型衰减策略逐渐适应了特定于域的低阶BN统计数据,例如平均值和差异,同时明确执行可共享的可共享高阶BN统计的一致性,例如,扩展和转移因子缩放和转移因子。 ,通过我们的优化目标。我们还通过低阶统计差异和缩放因素来自适应量化通道的可传递性,以评估每个通道的重要性。记忆一致的自我训练策略利用可靠的伪标签来稳定,有效的无监督适应。我们评估了基于OSUDA的跨模式和交叉型脑肿瘤分割和心脏MR到CT分割任务的框架。我们的实验结果表明,我们的内存一致性的OSUDA的性能优于现有的 - 源 - 删除的UDA方法,并且具有与源数据的UDA方法相似的性能。
translated by 谷歌翻译
无监督的域适应性(UDA)已被广泛用于将知识从标记的源域转移到未标记的目标域,以抵消在新域中标记的难度。常规解决方案的培训通常依赖于源和目标域数据的存在。但是,源域和经过训练的模型参数中大规模和标记的数据的隐私可能成为跨中心/域协作的主要关注点。在这项工作中,为了解决这个问题,我们为UDA提出了一个实用的解决方案,以使用仅在源域中训练的黑框分割模型,而不是原始源数据或白盒源模型。具体而言,我们求助于具有指数混合衰减(EMD)的知识蒸馏方案,以逐步学习针对目标的表示。另外,无监督的熵最小化进一步应用于目标域置信度的正则化。我们在Brats 2018数据库上评估了我们的框架,并以White-Box源模型适应方法在标准杆上实现了性能。
translated by 谷歌翻译
通过在未标记的目标域中应用良好的模型,通过对标记的源域的监督应用了良好的模型,已经通过对未标记的目标域应用了良好的模型,对无监督的域适应(UDA)进行了大量探索,以减轻源和目标域之间的域变化。然而,最近的文献表明,在存在重大领域变化的情况下,性能仍然远非令人满意。但是,由于绩效的实质性增长,划定一些目标样本通常是易于管理的,尤其是值得的。受此启发的启发,我们旨在开发半监督域的适应性(SSDA)进行医学图像分割,这在很大程度上没有被置于脑海中。因此,除了以统一的方式使用未标记的目标数据外,我们建议利用标记的源和目标域数据。具体而言,我们提出了一种新型的不对称共同训练(ACT)框架,以整合这些子集并避免源域数据的统治。遵循分歧和纠纷策略,我们将SSDA的标签监督分为两个不对称的子任务,包括半监督学习(SSL)和UDA,并利用两个细分市场的不同知识来考虑在两个部分之间的区别,以考虑到不同的知识。来源和目标标签监督。然后,在两个模块中学习的知识与ACT自适应地整合,通过基于置信度的伪标签进行迭代教学。此外,伪标签噪声与指数混合衰减方案可以很好地控制,以进行平滑传播。使用BRATS18数据库进行跨模式脑肿瘤MRI分割任务的实验表明,即使标记有限的目标样本,ACT也对UDA和最先进的SSDA方法产生了明显的改进,并接近了受监督的联合训练的“上限” 。
translated by 谷歌翻译
深度学习已成为解决不同领域中现实世界中问题的首选方法,部分原因是它能够从数据中学习并在广泛的应用程序上实现令人印象深刻的性能。但是,它的成功通常取决于两个假设:(i)精确模型拟合需要大量标记的数据集,并且(ii)培训和测试数据是独立的且分布相同的。因此,不能保证它在看不见的目标域上的性能,尤其是在适应阶段遇到分布数据的数据时。目标域中数据的性能下降是部署深层神经网络的关键问题,这些网络已成功地在源域中的数据训练。通过利用标记的源域数据和未标记的目标域数据来执行目标域中的各种任务,提出了无监督的域适应(UDA)来对抗这一点。 UDA在自然图像处理,视频分析,自然语言处理,时间序列数据分析,医学图像分析等方面取得了令人鼓舞的结果。在本综述中,作为一个快速发展的主题,我们对其方法和应用程序进行了系统的比较。此外,还讨论了UDA与其紧密相关的任务的联系,例如域的概括和分布外检测。此外,突出显示了当前方法和可能有希望的方向的缺陷。
translated by 谷歌翻译
未经监督的域适应(UDA)在两个明显不同的域之间学习高级语义对齐是一个至关重要的又具有挑战性的任务。〜在此目的,在这项工作中,我们建议利用低级边缘信息来促进适应作为前体任务具有小的跨域间隙,与语义分割相比具有小的跨域间隙。〜精确的轮廓然后提供用于引导语义适应的空间信息。更具体地,我们提出了一种多任务框架来学习轮廓调整网络以及语义分割适应网络,其将磁共振成像(MRI)切片及其初始边缘图作为输入。〜这两个网络是共同训练的源域标签,以及特征和边缘地图级对冲学习进行跨域对齐。此外,还包含自熵最小化,以进一步提高分割性能。我们在Brats2018数据库中评估了脑肿瘤的跨态分割的框架,呈现了与竞争方法相比我们方法的有效性和优越性。
translated by 谷歌翻译
实现域适应是有价值的,以将学习知识从标记为CT数据集传输到腹部多器官分段的目标未标记的MR DataSet。同时,非常希望避免目标数据集的高注重成本并保护源数据集的隐私。因此,我们提出了一种有效的无核心无监督域适应方法,用于跨型号腹部多器官分段而不访问源数据集。所提出的框架的过程包括两个阶段。在第一阶段,特征映射统计损失用于对准顶部分段网络中的源和目标特征的分布,并使用熵最小化损耗来鼓励高席位细分。从顶部分段网络输出的伪标签用于指导样式补偿网络生成类似源图像。从中间分割网络输出的伪标签用于监督所需模型的学习(底部分段网络)。在第二阶段,循环学习和像素自适应掩模细化用于进一步提高所需模型的性能。通过这种方法,我们在肝脏,肾脏,左肾肾脏和脾脏的分割中实现了令人满意的性能,骰子相似系数分别为0.884,0.891,0.864和0.911。此外,当存在目标注释数据时,所提出的方法可以很容易地扩展到情况。该性能在平均骰子相似度系数的0.888至0.922增加到0.888至0.922,靠近监督学习(0.929),只有一个标记的MR卷。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译
卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释数据集来协助培训,这有可能改善模型的性能。然而,由于目标结构的外观不同甚至成像方式,跨解剖结构域的转移进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应(CS-CADA)的对比度半监督学习,该学习适应一个模型以在目标结构域中细分相似的结构,这仅需要通过利用一组现有现有的现有的目标域中的限制注释源域中相似结构的注释图像。我们使用特定领域的批归归量表(DSBN)来单独地标准化两个解剖域的特征图,并提出跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均值老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在视网膜血管图像和心脏MR图像的帮助下,在X射线图像中准确分割冠状动脉,并借助底底图像,分别仅给定目标域中的少量注释。
translated by 谷歌翻译
对于医学图像分割,想象一下,如果仅使用源域中的MR图像训练模型,它的性能如何直接在目标域中进行CT图像?这种设置,即概括的跨模块分割,拥有其临床潜力,其比其他相关设置更具挑战性,例如域适应。为实现这一目标,我们本文通过利用在我们更广泛的分割期间利用增强的源相似和源不同的图像来提出新的双标准化模块。具体而言,给定单个源域,旨在模拟未经证明的目标域中可能的外观变化,我们首先利用非线性变换来增加源相似和源不同的图像。然后,为了充分利用这两种类型的增强,我们所提出的基于双重定量的模型采用共享骨干但独立的批量归一化层,用于单独归一化。之后,我们提出了一种基于风格的选择方案来自动选择测试阶段的适当路径。在三个公开可用的数据集上进行了广泛的实验,即Brats,跨型心脏和腹部多器官数据集表明我们的方法优于其他最先进的域概括方法。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
无监督的域适应性(UDA)已成功地应用于没有标签的标记源域转移到目标域的知识。最近引入了可转移的原型网络(TPN),进一步解决了班级条件比对。在TPN中,虽然在潜在空间中明确执行了源和目标域之间的类中心的接近度,但尚未完全研究基础的细颗粒亚型结构和跨域紧凑性。为了解决这个问题,我们提出了一种新方法,以适应性地执行细粒度的亚型意识对准,以提高目标域的性能,而无需两个域中的子类型标签。我们方法的见解是,由于不同的条件和标签变化,同类中未标记的亚型在亚型内具有局部接近性,同时表现出不同的特征。具体而言,我们建议通过使用中间伪标签同时执行亚型的紧凑度和阶级分离。此外,我们系统地研究了有或不具有亚型数字的各种情况,并建议利用基本的亚型结构。此外,开发了一个动态队列框架,以使用替代处理方案稳步地进化亚型簇质心。与最先进的UDA方法相比,使用多视图的先天性心脏病数据和VISDA和域进行了实验结果,显示了我们的亚型意识UDA的有效性和有效性。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
最小化分布匹配损失是在图像分类的背景下的域适应的原则方法。但是,在适应分割网络中,它基本上被忽略,目前由对抗模型主导。我们提出了一系列损失函数,鼓励在网络输出空间中直接核心密度匹配,直至从未标记的输入计算的一些几何变换。我们的直接方法而不是使用中间域鉴别器,而不是使用单一损失统一分发匹配和分段。因此,它通过避免额外的对抗步骤来简化分段适应,同时提高培训的质量,稳定性和效率。我们通过网络输出空间的对抗培训使我们对最先进的分段适应的方法并置。在对不同磁共振图像(MRI)方式相互调整脑细分的具有挑战性的任务中,我们的方法在准确性和稳定性方面取得了明显的结果。
translated by 谷歌翻译
无监督的域适应性(UDA)是解决一个问题的关键技术之一,很难获得监督学习所需的地面真相标签。通常,UDA假设在培训过程中可以使用来自源和目标域中的所有样本。但是,在涉及数据隐私问题的应用下,这不是现实的假设。为了克服这一限制,最近提出了无源数据的UDA,即无源无监督的域适应性(SFUDA)。在这里,我们提出了一种用于医疗图像分割的SFUDA方法。除了在UDA中通常使用的熵最小化方法外,我们还引入了一个损失函数,以避免目标域中的特征规范和在保留目标器官的形状约束之前。我们使用数据集进行实验,包括多种类型的源目标域组合,以显示我们方法的多功能性和鲁棒性。我们确认我们的方法优于所有数据集中的最先进。
translated by 谷歌翻译
无监督的交叉模式医学图像适应旨在减轻不同成像方式之间的严重域间隙,而无需使用目标域标签。该活动的关键依赖于对齐源和目标域的分布。一种常见的尝试是强制两个域之间的全局对齐,但是,这忽略了致命的局部不平衡域间隙问题,即,一些具有较大域间隙的局部特征很难转移。最近,某些方法进行一致性,重点是地方区域,以提高模型学习的效率。尽管此操作可能会导致上下文中关键信息的缺陷。为了应对这一限制,我们提出了一种新的策略,以减轻医学图像的特征,即全球本地联盟的一致性,以减轻域间隙不平衡。具体而言,功能 - 触发样式转移模块首先合成类似目标的源包含图像,以减少全局域间隙。然后,集成了本地功能掩码,以通过优先考虑具有较大域间隙的判别特征来减少本地特征的“间隙”。全球和局部对齐的这种组合可以精确地将关键区域定位在分割目标中,同时保持整体语义一致性。我们进行了一系列具有两个跨模式适应任务的实验,i,e。心脏子结构和腹部多器官分割。实验结果表明,我们的方法在这两个任务中都达到了最新的性能。
translated by 谷歌翻译
精确的心脏计算,多种式图像的分析和建模对于心脏病的诊断和治疗是重要的。晚期钆增强磁共振成像(LGE MRI)是一种有希望的技术,可视化和量化心肌梗塞(MI)和心房疤痕。由于LGE MRI的低图像质量和复杂的增强图案,MI和心房疤痕的自动化量可能是具有挑战性的。此外,与带金标准标签的其他序列LGE MRIS相比特别有限,这表示用于开发用于自动分割和LGE MRIS定量的新型算法的另一个障碍。本章旨在总结最先进的基于深度学习的多模态心脏图像分析的先进贡献。首先,我们向基于多序心脏MRI的心肌和病理分割介绍了两个基准工作。其次,提出了两种新的左心房瘢痕分割和从LGE MRI定量的新型框架。第三,我们为跨型心脏图像分割提出了三种无监督的域适应技术。
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译