虽然许多对持续学习的作品显示了减轻灾难性遗忘的有希望的结果,但他们依赖于监督培训。要在标签无话量的增量设置中成功学习,模型必须区分学习和新颖的类,以适当地包括用于培训的样本。我们介绍了一种新颖的检测方法,可以通过培训来源作为新课程来利用网络混淆。我们发现在该检测方法期间结合了类别不平衡,大大提高了性能。我们的方法的有效性在一组图像分类基准中证明了:MNIST,SVHN,CIFAR-10,CIFAR-100和婴儿床。
translated by 谷歌翻译
尽管深度神经网络(DNNS)在封闭世界的学习方案中取得了令人印象深刻的分类性能,但它们通常无法概括地在动态的开放世界环境中看不见的类别,在这种环境中,概念数量无界的数量。相反,人类和动物学习者具有通过识别和适应新颖观察结果来逐步更新知识的能力。特别是,人类通过独家(唯一)基本特征集来表征概念,这些特征既用于识别已知类别和识别新颖性。受到自然学习者的启发,我们引入了稀疏的高级独特,低水平共享的特征表示(Shels),同时鼓励学习独家的高级功能和必不可少的,共享的低级功能。高级功能的排他性使DNN能够自动检测到分布(OOD)数据,而通过稀疏的低级功能可以有效利用容量,可以容纳新知识。最终的方法使用OOD检测来执行班级持续学习,而没有已知的类边界。我们表明,使用木材进行新颖性检测导致对各种基准数据集的最新OOD检测方法的统计显着改善。此外,我们证明了木木模型在课堂学习环境中减轻灾难性的遗忘,从而实现了一个组合的新颖性检测和住宿框架,该框架支持在开放世界中学习
translated by 谷歌翻译
新颖性检测旨在自动识别分销(OOD)数据,而无需任何先验知识。它是数据监视,行为分析和其他应用程序中的关键步骤,帮助在现场中保持不断学习。常规的OOD检测方法对数据或特征的集合进行多变化分析,通常诉诸于数据的监督,以提高准确性。实际上,这种监督是不切实际的,因为人们不能预料到异常数据。在本文中,我们提出了一种小说,自我监督的方法,不依赖于任何预定义的OOD数据:(1)新方法评估梯度之间的分布和OOD数据之间的Mahalanobis距离。 (2)通过自我监督的二进制分类器辅助,以指导标签选择以生成梯度,并最大化Mahalanobis距离。在具有多个数据集的评估中,例如CiFar-10,CiFar-100,SVHN和TINIMAGENET,所提出的方法始终如一地优于接收器操作特征(AUROC)和区域下的区域内的最先进的监督和无监督的方法在精密召回曲线(AUPR)度量下。我们进一步证明,该探测器能够在持续学习中准确地学习一个OOD类。
translated by 谷歌翻译
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small-and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
translated by 谷歌翻译
如今,几次拍摄设置中的分类和分配(OOD)检测仍然具有具有挑战性的目标,因为罕见和几次拍摄设置中的样品有限,并且由于对抗攻击。完成这些目标对于安全,安全和防御的关键系统非常重要。同时,由于深度神经网络分类器为远离训练数据的样品集中置信,因此检测是挑战的具有挑战性。为了解决这些限制,我们提出了几次射击的鲁棒(FROB)模型进行分类和少量拍摄的检测。我们设计了肥胖,以改善鲁棒性和可靠的置信度预测,对几次拍摄的检测。我们生成正常类分布的支持边界,并将其与少量异常曝光(OE)相结合。我们提出了一种基于生成和鉴别模型的自我监督的学习少量置信界限方法。 FROB的贡献是产生的边界以自我监督的学习方式的结合,并在学习边界处施加低信心。 Frob隐含地在边界上产生强烈的对抗性样本,并强制来自ood的样本,包括我们的边界,对分类器的信心不太自信。 FROB通过适用于未知,在野外的测试集中实现概念的概念,与训练数据集无关。为了提高稳健性,甚至可以为零拍摄重新设计OE。通过包括我们的边界,FROB减少了与模型的几次稳健性相关的阈值;它保持了大约独立于几幅射击的表现。不同集合和单级分类(OCC)数据的少量射击鲁棒性分析评估(OCC)数据显示,FROB在鲁棒性方面实现了竞争性能,以鲁棒性对异常较少的样本人口和可变性实现了基准。
translated by 谷歌翻译
现代ML方法在培训数据是IID,大规模和良好标记的时候Excel。在不太理想的条件下学习仍然是一个开放的挑战。在不利条件下,几次射击,持续的,转移和代表学习的子场在学习中取得了很大的进步;通过方法和见解,每个都提供了独特的优势。这些方法解决了不同的挑战,例如依次到达的数据或稀缺的训练示例,然而,在部署之前,ML系统将面临困难的条件。因此,需要可以处理实际设置中许多学习挑战的一般ML系统。为了促进一般ML方法目标的研究,我们介绍了一个新的统一评估框架 - 流体(灵活的顺序数据)。流体集成了几次拍摄,持续的,转移和表示学习的目标,同时能够比较和整合这些子场的技术。在流体中,学习者面临数据流,并且必须在选择如何更新自身时进行顺序预测,快速调整到新颖的类别,并处理更改的数据分布;虽然会计计算总额。我们对广泛的方法进行实验,这些方法阐述了新的洞察当前解决方案的优缺点并表明解决了新的研究问题。作为更一般方法的起点,我们展示了两种新的基线,其在流体上优于其他评估的方法。项目页面:https://raivn.cs.washington.edu/projects/fluid/。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
本文研究持续学习(CL)的逐步学习(CIL)。已经提出了许多方法来处理CIL中的灾难性遗忘(CF)。大多数方法都会为单个头网络中所有任务的所有类别构建单个分类器。为了防止CF,一种流行的方法是记住以前任务中的少数样本,并在培训新任务时重播它们。但是,这种方法仍然患有严重的CF,因为在内存中仅使用有限的保存样本数量来更新或调整了先前任务的参数。本文提出了一种完全不同的方法,该方法使用变压器网络为每个任务(称为多头模型)构建一个单独的分类器(头部),称为更多。与其在内存中使用保存的样本在现有方法中更新以前的任务/类的网络,不如利用保存的样本来构建特定任务分类器(添加新的分类头),而无需更新用于先前任务/类的网络。新任务的模型经过培训,可以学习任务的类别,并且还可以检测到不是从相同数据分布(即,均分布(OOD))的样本。这使测试实例属于的任务的分类器能够为正确的类产生高分,而其他任务的分类器可以产生低分,因为测试实例不是来自这些分类器的数据分布。实验结果表明,更多的表现优于最先进的基线,并且自然能够在持续学习环境中进行OOD检测。
translated by 谷歌翻译
持续学习(CL)调查如何在无需遗忘的情况下培训在任务流上的深网络。文献中提出的CL设置假设每个传入示例都与地面真实注释配对。然而,这与许多真实应用的冲突这项工作探讨了持续的半监督学习(CSSL):这里只有一小部分标记的输入示例显示给学习者。我们评估当前CL方法(例如:EWC,LWF,Icarl,ER,GDumb,Der)在这部小说和具有挑战性的情况下,过度装箱纠缠忘记。随后,我们设计了一种新的CSSL方法,用于在学习时利用度量学习和一致性正则化来利用未标记的示例。我们展示我们的提案对监督越来越令人惊讶的是,我们的提案呈现出更高的恢复能力,甚至更令人惊讶地,仅依赖于25%的监督,以满足全面监督培训的优于营业型SOTA方法。
translated by 谷歌翻译
背景。通常,深度神经网络(DNN)概括了从类似于训练集的分布的样本概括。然而,当测试样本从不同的分布中抽出时,DNNS的预测是脆性和不可靠的。这是在现实世界应用中部署的主要关注点,这种行为可能以相当大的成本,例如工业生产线,自治车辆或医疗保健应用。贡献。我们将DNN中的分布(OOD)检测出来作为统计假设检测问题。在我们所提出的框架内产生的测试将证据组合来自整个网络。与以前的检测启发式不同,此框架返回每个测试样本的$ p $ -value。有保证维护I型错误(T1E - 错误地识别OOD样本为ID)进行测试数据。此外,这允许在保持T1E的同时组合多个检测器。在此框架上建立,我们建议一种基于低阶统计数据的新型程序。我们的方法在不接受的EOD基准上的最新方法实现了比较或更好的结果,而无需再培训网络参数或假设测试分配的现有知识 - 并且以计算成本的一小部分。
translated by 谷歌翻译
无监督的终身学习是指随着时间的流逝学习的能力,同时在没有监督的情况下记住以前的模式。以前的作品假设了有关传入数据(例如,了解类边界)的强大先验知识,这些数据是在复杂且不可预测的环境中无法获得的。在本文中,以现实世界情景的启发,我们通过类外的流媒体数据正式定义了在线无监督的终身学习问题,该数据是非IID和单次通道。由于缺乏标签和先验知识,该问题比现有的终身学习问题更具挑战性。为了解决这个问题,我们提出了自我监督的对比终身学习(比例),该学习提取并记住了知识。规模围绕三个主要组成部分进行设计:伪监督的对比损失,自我监督的遗忘损失以及统一子集选择的在线记忆更新。这三个组件旨在协作以最大程度地提高学习表现。我们的损失功能利用成对相似性,因此消除了对监督或先验知识的依赖。我们在IID和四个非IID数据流下进行了全面的规模实验。在所有设置上,缩放量优于最佳最新算法,在CIFAR-10,CIFAR-100和Subimagenet数据集上,提高了高达6.43%,5.23%和5.86%的KNN精度。
translated by 谷歌翻译
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
translated by 谷歌翻译
在推理时间检测到分布(OOD)数据对于机器学习的许多应用至关重要。我们提出Xood:一个新型的基于极值的OOD检测框架,用于图像分类,由两种算法组成。第一个是Xood-M完全无监督,而第二个Xood-L则是自我监督的。两种算法都依赖于神经网络激活层中数据的极端值捕获的信号,以区分分布和OOD实例。我们通过实验表明,Xood-M和Xood-l均优于效率和准确性的许多基准数据集的最先进的OOD检测方法,从而将虚假阳性率(FPR95)降低了50%,同时改善了推论时间数量级。
translated by 谷歌翻译
深度神经网络对各种任务取得了出色的性能,但它们具有重要问题:即使对于完全未知的样本,也有过度自信的预测。已经提出了许多研究来成功过滤出这些未知的样本,但它们仅考虑狭窄和特定的任务,称为错误分类检测,开放式识别或分布外检测。在这项工作中,我们认为这些任务应该被视为根本存在相同的问题,因为理想的模型应该具有所有这些任务的检测能力。因此,我们介绍了未知的检测任务,以先前的单独任务的整合,用于严格检查深度神经网络对广谱的广泛未知样品的检测能力。为此,构建了不同尺度上的统一基准数据集,并且存在现有流行方法的未知检测能力进行比较。我们发现深度集合始终如一地优于检测未知的其他方法;但是,所有方法只针对特定类型的未知方式成功。可重复的代码和基准数据集可在https://github.com/daintlab/unknown-detection-benchmarks上获得。
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译
Discriminative neural networks offer little or no performance guarantees when deployed on data not generated by the same process as the training distribution. On such out-of-distribution (OOD) inputs, the prediction may not only be erroneous, but confidently so, limiting the safe deployment of classifiers in real-world applications. One such challenging application is bacteria identification based on genomic sequences, which holds the promise of early detection of diseases, but requires a model that can output low confidence predictions on OOD genomic sequences from new bacteria that were not present in the training data. We introduce a genomics dataset for OOD detection that allows other researchers to benchmark progress on this important problem. We investigate deep generative model based approaches for OOD detection and observe that the likelihood score is heavily affected by population level background statistics. We propose a likelihood ratio method for deep generative models which effectively corrects for these confounding background statistics. We benchmark the OOD detection performance of the proposed method against existing approaches on the genomics dataset and show that our method achieves state-of-the-art performance. We demonstrate the generality of the proposed method by showing that it significantly improves OOD detection when applied to deep generative models of images.
translated by 谷歌翻译
新颖的检测方法识别不代表模型训练集的样本,从而标记误导性预测并在部署时间带来更大的灵活性和透明度。但是,该领域的研究仅考虑了离线环境中的新颖性检测。最近,在计算机视觉社区中,应用程序越来越多,应用程序需要更灵活的框架 - 持续学习 - 在该框架中,代表新域,新类或新任务的新数据在不同的时间点可用。在这种情况下,新颖性检测变得越来越重要,有趣且具有挑战性。这项工作确定了这两个问题之间的关键联系,并研究了持续学习环境下的新颖性检测问题。我们制定了持续的新颖性检测问题,并提出了基准,在该基准中,我们比较了不同持续学习设置下的几种新颖性检测方法。我们表明,持续学习会影响新颖性检测算法的行为,而新颖性检测可以确定持续学习者的行为的见解。我们进一步提出了基准并讨论可能的研究方向。我们认为,这两个问题的耦合是将视觉模型付诸实践的有前途的方向。
translated by 谷歌翻译
在图像分类中,在检测分布(OOD)数据时发生了许多发展。但是,大多数OOD检测方法是在一组标准数据集上评估的,该数据集与培训数据任意不同。没有明确的定义``好的''ood数据集。此外,最先进的OOD检测方法已经在这些标准基准上取得了几乎完美的结果。在本文中,我们定义了2类OOD数据使用与分布(ID)数据的感知/视觉和语义相似性的微妙概念。我们将附近的OOD样本定义为感知上相似但语义上与ID样本的不同,并将样本转移为视觉上不同但在语义上与ID相似的点数据。然后,我们提出了一个基于GAN的框架,用于从这两个类别中生成OOD样品,给定一个ID数据集。通过有关MNIST,CIFAR-10/100和Imagenet的广泛实验,我们表明A)在常规基准上表现出色的ART OOD检测方法对我们提出的基准测试的稳健性明显较小。 N基准测试,反之亦然,因此表明甚至可能不需要单独的OOD集来可靠地评估OOD检测中的性能。
translated by 谷歌翻译
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one, under the constraints of having limited system size and computational cost, in which the main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones. With the specific focus on the class-incremental OCL scenario, i.e. OCL for classification, the recent advance incorporates the contrastive learning technique for learning more generalised feature representation to achieve the state-of-the-art performance but is still unable to fully resolve the catastrophic forgetting. In this paper, we follow the strategy of adopting contrastive learning but further introduce the semantically distinct augmentation technique, in which it leverages strong augmentation to generate more data samples, and we show that considering these samples semantically different from their original classes (thus being related to the out-of-distribution samples) in the contrastive learning mechanism contributes to alleviate forgetting and facilitate model stability. Moreover, in addition to contrastive learning, the typical classification mechanism and objective (i.e. softmax classifier and cross-entropy loss) are included in our model design for faster convergence and utilising the label information, but particularly equipped with a sampling strategy to tackle the tendency of favouring the new classes (i.e. model bias towards the recently learnt classes). Upon conducting extensive experiments on CIFAR-10, CIFAR-100, and Mini-Imagenet datasets, our proposed method is shown to achieve superior performance against various baselines.
translated by 谷歌翻译
Continual learning (CL) learns a sequence of tasks incrementally. There are two popular CL settings, class incremental learning (CIL) and task incremental learning (TIL). A major challenge of CL is catastrophic forgetting (CF). While a number of techniques are already available to effectively overcome CF for TIL, CIL remains to be highly challenging. So far, little theoretical study has been done to provide a principled guidance on how to solve the CIL problem. This paper performs such a study. It first shows that probabilistically, the CIL problem can be decomposed into two sub-problems: Within-task Prediction (WP) and Task-id Prediction (TP). It further proves that TP is correlated with out-of-distribution (OOD) detection, which connects CIL and OOD detection. The key conclusion of this study is that regardless of whether WP and TP or OOD detection are defined explicitly or implicitly by a CIL algorithm, good WP and good TP or OOD detection are necessary and sufficient for good CIL performances. Additionally, TIL is simply WP. Based on the theoretical result, new CIL methods are also designed, which outperform strong baselines in both CIL and TIL settings by a large margin.
translated by 谷歌翻译