有限的作品显示无监督的分布(OOD)方法对复杂的医疗数据的功效。在这里,我们展示了我们无监督的OOD检测算法,SIMCLR-LOF的初步调查结果,以及在医学图像上应用的最近现实方法(SSD)的最新状态。SIMCLR-LOF使用SIMCLR学习语义有意义的功能,如果测试样本是ood的,则使用LOF进行评分。我们在多源国际皮肤成像协作(ISIC)2019数据集上进行了评估,并显示与SSD竞争的结果以及应用于同一数据的最近监督方法。
translated by 谷歌翻译
深度神经网络已经显示出使用医学图像数据的疾病检测和分类结果。然而,他们仍然遭受处理真实世界场景的挑战,特别是可靠地检测分配(OOD)样本。我们提出了一种方法来强化皮肤和疟疾样本的ood样本,而无需在训练期间获得标记的OOD样品。具体而言,我们使用度量学习以及Logistic回归来强制深度网络学习众多丰富的类代表功能。要指导对OOD示例的学习过程,我们通过删除图像或置换图像部件中的类特定的突出区域并远离分布式样本来生成ID类似的示例。在推理时间期间,用于检测分布外样品的K +互易邻居。对于皮肤癌ood检测,我们使用两个标准基准皮肤癌症ISIC数据集AS ID,六种不同的数据集具有不同难度水平的数据集被视为出于分配。对于疟疾检测,我们使用BBBC041 Malaria DataSet作为ID和五个不同的具有挑战性的数据集,如分销。我们在先前的先前皮肤癌和疟疾OOD检测中,我们在TNR @ TPR95%中提高了最先进的结果,改善了5%和4%。
translated by 谷歌翻译
准确地检测出具有不同语义和协变量转移相对于分布的数据(ID)数据的分布外(OOD)数据对于部署安全可靠的模型至关重要。当处理高度结果应用(例如医学成像,自动驾驶汽车等)时,情况尤其如此。目的是设计一个可以接受ID数据有意义变化的检测器,同时还拒绝了OOD制度的示例。在实践中,可以通过使用适当的评分函数(例如能量)来实现一致性来实现此双重目标,并校准检测器以拒绝一组策划的OOD数据(称为离群曝光或不久的OE)。尽管OE方法被广泛采用,但由于现实世界情景的不可预测性,组装代表性的OOD数据集既昂贵又具有挑战性,因此最新设计了无OE探测器的趋势。在本文中,我们做出了一个令人惊讶的发现,即控制对ID变化的概括和暴露于不同(合成)异常值的示例对于同时改善语义和模态转移检测至关重要。与现有方法相反,我们的方法样本在潜在空间中嵌入式体系,并通过负数据扩展构建异常示例。通过一项关于医学成像基准(MedMnist,ISIC2019和NCT)的严格实证研究,我们在语义和模态转移下的现有无OE,OOD检测方法上表现出显着的性能增长(AUROC中的15美元\%-35 \%$)。
translated by 谷歌翻译
A recent popular approach to out-of-distribution (OOD) detection is based on a self-supervised learning technique referred to as contrastive learning. There are two main variants of contrastive learning, namely instance and class discrimination, targeting features that can discriminate between different instances for the former, and different classes for the latter. In this paper, we aim to understand the effectiveness and limitation of existing contrastive learning methods for OOD detection. We approach this in 3 ways. First, we systematically study the performance difference between the instance discrimination and supervised contrastive learning variants in different OOD detection settings. Second, we study which in-distribution (ID) classes OOD data tend to be classified into. Finally, we study the spectral decay property of the different contrastive learning approaches and examine how it correlates with OOD detection performance. In scenarios where the ID and OOD datasets are sufficiently different from one another, we see that instance discrimination, in the absence of fine-tuning, is competitive with supervised approaches in OOD detection. We see that OOD samples tend to be classified into classes that have a distribution similar to the distribution of the entire dataset. Furthermore, we show that contrastive learning learns a feature space that contains singular vectors containing several directions with a high variance which can be detrimental or beneficial to OOD detection depending on the inference approach used.
translated by 谷歌翻译
Detecting out-of-distribution (OOD) inputs during the inference stage is crucial for deploying neural networks in the real world. Previous methods commonly relied on the output of a network derived from the highly activated feature map. In this study, we first revealed that a norm of the feature map obtained from the other block than the last block can be a better indicator of OOD detection. Motivated by this, we propose a simple framework consisting of FeatureNorm: a norm of the feature map and NormRatio: a ratio of FeatureNorm for ID and OOD to measure the OOD detection performance of each block. In particular, to select the block that provides the largest difference between FeatureNorm of ID and FeatureNorm of OOD, we create Jigsaw puzzle images as pseudo OOD from ID training samples and calculate NormRatio, and the block with the largest value is selected. After the suitable block is selected, OOD detection with the FeatureNorm outperforms other OOD detection methods by reducing FPR95 by up to 52.77% on CIFAR10 benchmark and by up to 48.53% on ImageNet benchmark. We demonstrate that our framework can generalize to various architectures and the importance of block selection, which can improve previous OOD detection methods as well.
translated by 谷歌翻译
本文我们的目标是利用异质的温度缩放作为校准策略(OOD)检测。此处的异质性是指每个样品的最佳温度参数可能不同,而不是传统的方法对整个分布使用相同的值。为了实现这一目标,我们提出了一种称为锚定的新培训策略,可以估算每个样品的适当温度值,从而导致几个基准的最新OOD检测性能。使用NTK理论,我们表明该温度函数估计与分类器的认知不确定性紧密相关,这解释了其行为。与某些表现最佳的OOD检测方法相反,我们的方法不需要暴露于其他离群数据集,自定义校准目标或模型结合。通过具有不同OOD检测设置的经验研究 - 远处,OOD附近和语义相干OOD - 我们建立了一种高效的OOD检测方法。可以在此处访问代码和模型-https://github.com/rushilanirudh/amp
translated by 谷歌翻译
近年来,自动化方法迅速发展了皮肤病变和分类的方法。由于此类系统在诊所中的部署越来越多,因此很重要的是,为各种分布(OOD)样品(未知的皮肤病变和状况)开发更强大的系统。但是,当前对皮肤病变分类训练的深度学习模型倾向于将这些OOD样品错误地分类为他们学习的皮肤病变类别之一。为了解决这个问题,我们提出了一种简单而战略的方法,可以改善OOD检测性能,同时维持已知皮肤病变类别的多类分类精度。要说明,这种方法建立在皮肤病变图像的长尾且细粒度检测任务的现实情况之上。通过这种方法,1)首先,我们针对中间和尾巴之间的混合,以解决长尾问题。 2)后来,我们将上述混合策略与原型学习结合在一起,以解决数据集的细粒度。本文的独特贡献是两倍,这是通过广泛的实验证明的。首先,我们提出了针对皮肤病变的OOD任务的现实问题。其次,我们提出了一种针对问题设置的长尾且细粒度方面的方法,以提高OOD性能。
translated by 谷歌翻译
Novelty detection, i.e., identifying whether a given sample is drawn from outside the training distribution, is essential for reliable machine learning. To this end, there have been many attempts at learning a representation well-suited for novelty detection and designing a score based on such representation. In this paper, we propose a simple, yet effective method named contrasting shifted instances (CSI), inspired by the recent success on contrastive learning of visual representations. Specifically, in addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself. Based on this, we propose a new detection score that is specific to the proposed training scheme. Our experiments demonstrate the superiority of our method under various novelty detection scenarios, including unlabeled one-class, unlabeled multi-class and labeled multi-class settings, with various image benchmark datasets. Code and pre-trained models are available at https://github.com/alinlab/CSI.
translated by 谷歌翻译
Commonly used AI networks are very self-confident in their predictions, even when the evidence for a certain decision is dubious. The investigation of a deep learning model output is pivotal for understanding its decision processes and assessing its capabilities and limitations. By analyzing the distributions of raw network output vectors, it can be observed that each class has its own decision boundary and, thus, the same raw output value has different support for different classes. Inspired by this fact, we have developed a new method for out-of-distribution detection. The method offers an explanatory step beyond simple thresholding of the softmax output towards understanding and interpretation of the model learning process and its output. Instead of assigning the class label of the highest logit to each new sample presented to the network, it takes the distributions over all classes into consideration. A probability score interpreter (PSI) is created based on the joint logit values in relation to their respective correct vs wrong class distributions. The PSI suggests whether the sample is likely to belong to a specific class, whether the network is unsure, or whether the sample is likely an outlier or unknown type for the network. The simple PSI has the benefit of being applicable on already trained networks. The distributions for correct vs wrong class for each output node are established by simply running the training examples through the trained network. We demonstrate our OOD detection method on a challenging transmission electron microscopy virus image dataset. We simulate a real-world application in which images of virus types unknown to a trained virus classifier, yet acquired with the same procedures and instruments, constitute the OOD samples.
translated by 谷歌翻译
分布(OOD)检测是安全部署模型在开放世界中的关键。对于OOD检测,收集足够的标记数据(ID)通常比未标记的数据更耗时且昂贵。当ID标记的数据受到限制时,由于其对ID标记的数据的量的高度依赖性,因此先前的OOD检测方法不再优越。基于有限的ID标记数据和足够的未标记数据,我们定义了一种称为弱监督的新设置(WSOOD)。为了解决新问题,我们提出了一种称为拓扑结构学习(TSL)的有效方法。首先,TSL使用一种对比度学习方法来构建ID和OOD数据的初始拓扑结构空间。其次,在初始拓扑空间中,TSL矿山有效的拓扑连接。最后,基于有限的ID标记数据和开采拓扑连接,TSL在新的拓扑空间中重建拓扑结构,以提高ID和OOD实例的可分离性。对几个代表性数据集的广泛研究表明,TSL明显胜过最先进的研究,从而在新的WSood环境中验证了我们方法的有效性和鲁棒性。
translated by 谷歌翻译
分布(OOD)检测是在开放世界中部署机器学习模型的关键任务。基于距离的方法已经证明了有望,如果测试样品离分布(ID)数据相对遥远,则将测试样品视为OOD。但是,先前的方法对基础特征空间施加了强有力的分布假设,这可能并不总是存在。在本文中,我们探讨了非参数最近邻居距离的疗效,以检测OOD,这在文献中很大程度上被忽略了。与先前的工作不同,我们的方法不会施加任何分布假设,因此提供了更强的灵活性和一般性。我们证明了在几个基准测试中基于邻元的OOD检测的有效性,并建立了卓越的性能。在对Imagenet-1K训练的同一模型下,我们的方法将假阳性率(FPR@tpr95)降低了24.77%,与强大的基线SSD+相比,使用参数方法Mahalanobis在检测中。可用代码:https://github.com/deeplearning-wisc/knn-ood。
translated by 谷歌翻译
我们研究了与任何已经训练的分类器兼容的简单方法(OOD)图像检测,仅依靠其预测或学会的表示。当使用Resnet-50和Swin Transformer模型使用时,评估各种方法的OOD检测性能,我们找到了仅考虑学会表示的模型预测的方法,可以轻松地胜过模型的预测。基于我们的分析,我们主张在其他研究中忽略了一种死去的方法:仅作为OOD图像标记,其平均距离与他们最近的邻居的平均距离很大(在图像分类器的表示空间中,经过训练的图像分类器的空间分销数据)。
translated by 谷歌翻译
已知神经网络在输入图像上产生过度自信的预测,即使这些图像不存在(OOD)样本。这限制了神经网络模型在存在OOD样本的实际场景中的应用。许多现有方法通过利用各种提示来确定OOD实例,例如在特征空间,逻辑空间,梯度空间或图像的原始空间中查找不规则模式。相反,本文提出了一种简单的测试时间线性训练(ETLT)用于OOD检测方法。从经验上讲,我们发现输入图像的概率不存在,与神经网络提取的功能令人惊讶地线性相关。具体来说,许多最先进的OOD算法虽然旨在以不同的方式衡量可靠性,但实际上导致OOD得分主要与其图像特征线性相关。因此,通过简单地学习从配对图像特征训练并在测试时间推断的OOD分数的线性回归模型,我们可以为测试实例做出更精确的OOD预测。我们进一步提出了该方法的在线变体,该变体可以实现有希望的性能,并且在现实世界中更为实用。值得注意的是,我们将FPR95从$ 51.37 \%$提高到CIFAR-10数据集的$ 12.30 \%$,最大的SoftMax概率是基本的OOD检测器。在几个基准数据集上进行的广泛实验显示了ETLT对OOD检测任务的功效。
translated by 谷歌翻译
Deep Learning (DL) models tend to perform poorly when the data comes from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection helps to identify such data samples, increasing the model's reliability. Recent works have developed DL-based OOD detection that achieves promising results on 2D medical images. However, scaling most of these approaches on 3D images is computationally intractable. Furthermore, the current 3D solutions struggle to achieve acceptable results in detecting even synthetic OOD samples. Such limited performance might indicate that DL often inefficiently embeds large volumetric images. We argue that using the intensity histogram of the original CT or MRI scan as embedding is descriptive enough to run OOD detection. Therefore, we propose a histogram-based method that requires no DL and achieves almost perfect results in this domain. Our proposal is supported two-fold. We evaluate the performance on the publicly available datasets, where our method scores 1.0 AUROC in most setups. And we score second in the Medical Out-of-Distribution challenge without fine-tuning and exploiting task-specific knowledge. Carefully discussing the limitations, we conclude that our method solves the sample-level OOD detection on 3D medical images in the current setting.
translated by 谷歌翻译
Deep Learning models are easily disturbed by variations in the input images that were not seen during training, resulting in unpredictable behaviours. Such Out-of-Distribution (OOD) images represent a significant challenge in the context of medical image analysis, where the range of possible abnormalities is extremely wide, including artifacts, unseen pathologies, or different imaging protocols. In this work, we evaluate various uncertainty frameworks to detect OOD inputs in the context of Multiple Sclerosis lesions segmentation. By implementing a comprehensive evaluation scheme including 14 sources of OOD of various nature and strength, we show that methods relying on the predictive uncertainty of binary segmentation models often fails in detecting outlying inputs. On the contrary, learning to segment anatomical labels alongside lesions highly improves the ability to detect OOD inputs.
translated by 谷歌翻译
Deep neural networks have attained remarkable performance when applied to data that comes from the same distribution as that of the training set, but can significantly degrade otherwise. Therefore, detecting whether an example is out-of-distribution (OoD) is crucial to enable a system that can reject such samples or alert users. Recent works have made significant progress on OoD benchmarks consisting of small image datasets. However, many recent methods based on neural networks rely on training or tuning with both in-distribution and out-of-distribution data. The latter is generally hard to define a-priori, and its selection can easily bias the learning. We base our work on a popular method ODIN 1 [21], proposing two strategies for freeing it from the needs of tuning with OoD data, while improving its OoD detection performance. We specifically propose to decompose confidence scoring as well as a modified input pre-processing method. We show that both of these significantly help in detection performance. Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference in the difficulty of the problem, providing an analysis of when ODIN-like strategies do or do not work.
translated by 谷歌翻译
图像分类中的严重问题是培训的模型可能对输入数据表现良好,该输入数据源自与用于模型培训的数据相同的分布,但对于分销超出(OOD)样本而言更加差。在真实的安全关键应用中,特别是如果新的数据点是ood的新数据点,重要的是要注意。迄今为止,通常使用置信分数,基于自动编码器的重建或对比学习来解决OOD检测。但是,尚未探索全局图像上下文以区分在分布和OOD样本之间的非局部对象。本文提出了一种名为OOODFORMER的首次检测架构,该架构利用变压器的上下文化功能。作为主要特征提取器的跨\ --former允许我们利用对象概念及其区分属性以及通过可视注意的共同发生。使用上下文化的嵌入,我们使用阶级条件潜伏空间相似性和网络置信度分数展示了OOD检测。我们的方法显示了各种数据集的完全普遍性。我们在CiFar-10 / -100和Imagenet30上取得了新的最先进的结果。
translated by 谷歌翻译
无监督的分销(U-OOD)检测最近引起了很多关注,因为它在关键任务系统中的重要性以及对其监督对方的更广泛的适用性。尽管注意力增加,U-OOD方法遭受了重要的缺点。通过对不同的基准和图像方式进行大规模评估,我们在这项工作中展示了最受欢迎的最先进的方法无法始终如一地始终基于Mahalanobis距离(Mahaad)的简单且相对未知的异常探测器。这些方法不一致的一个关键原因是缺乏U-OOD的正式描述。通过一个简单的思想实验,我们提出了基于培训数据集的不变性的U-OOD的表征。我们展示了这种表征如何在众所周置的Mahaad方法中体现在不知不觉中,从而解释了其质量。此外,我们的方法可用于解释U-OOD探测器的预测,并为评估未来U-OOD方法的良好实践提供见解。
translated by 谷歌翻译
在推理时间检测到分布(OOD)数据对于机器学习的许多应用至关重要。我们提出Xood:一个新型的基于极值的OOD检测框架,用于图像分类,由两种算法组成。第一个是Xood-M完全无监督,而第二个Xood-L则是自我监督的。两种算法都依赖于神经网络激活层中数据的极端值捕获的信号,以区分分布和OOD实例。我们通过实验表明,Xood-M和Xood-l均优于效率和准确性的许多基准数据集的最先进的OOD检测方法,从而将虚假阳性率(FPR95)降低了50%,同时改善了推论时间数量级。
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译