小组同步问题涉及从其成对比率噪声测量中估算组元素的收集。此任务是许多计算问题中的关键组成部分,包括单粒子冷冻电子显微镜(Cryo-EM)中的分子重建问题。估计组元素的标准方法基于迭代应用线性和非线性操作员。受到与深神经网络的结构相似性的激励,我们采用了算法展开的概念,其中训练数据用于优化算法。我们为多种组同步实例设计了展开的算法,包括3-D旋转组的同步:Cryo-EM中的同步问题。我们还将类似的方法应用于多参考对准问题。我们通过数值实验表明,展开策略在各种情况下都优于现有的同步算法。
translated by 谷歌翻译
多引用一致性(MRA)问题需要从自身的多个嘈杂和旋转副本中估算图像。如果噪声水平较低,则可以通过估算丢失的旋转,对齐图像并平均噪声来重建图像。虽然如果噪声水平很高,则无法进行准确的旋转估计,但仍可以近似旋转,因此可以提供必不可少的信息。特别是,可以利用学习近似误差以进行有效的图像估计。在本文中,我们提出了一个称为同步EM的新计算框架,该框架由角同步组成,然后是期望最大化(EM)。同步步骤导致旋转的浓缩分布;该分布被学会,然后作为贝叶斯先验纳入EM。学习的分布还大大降低了EM迭代的搜索空间,从而大大减少了计算负载。我们通过广泛的数值实验表明,所提出的框架可以在高噪声水平上显着加速MRA的EM,偶尔通过几个数量级,而不会降低重建质量。
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
我们通过基于压缩感测和多输出(MIMO)无线雷达来解决材料缺陷的检测,这些材料缺陷在层状材料结构内部。这里,由于层状结构的表面的反射导致的强杂波通常经常使缺陷挑战的缺陷。因此,需要改进的缺陷检测所需的复杂信号分离方法。在许多情况下,我们感兴趣的缺陷的数量是有限的,并且分层结构的信令响应可以被建模为低秩结构。因此,我们提出了对缺陷检测的关节等级和稀疏最小化。特别是,我们提出了一种基于迭代重量的核和$ \ ell_1- $规范(一种双重重量方法)的非凸法方法,与传统的核规范和$ \ ell_1- $常态最小化相比获得更高的准确性。为此,迭代算法旨在估计低级别和稀疏贡献。此外,我们建议深入学习来学习算法(即,算法展开)的参数,以提高算法的准确性和汇聚速度。我们的数值结果表明,该方法在恢复的低级别和稀疏组分的均方误差和收敛速度方面优于常规方法。
translated by 谷歌翻译
近年来,在诸如denoing,压缩感应,介入和超分辨率等反问题中使用深度学习方法的使用取得了重大进展。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。
translated by 谷歌翻译
Channel estimation is a critical task in multiple-input multiple-output (MIMO) digital communications that substantially effects end-to-end system performance. In this work, we introduce a novel approach for channel estimation using deep score-based generative models. A model is trained to estimate the gradient of the logarithm of a distribution and is used to iteratively refine estimates given measurements of a signal. We introduce a framework for training score-based generative models for wireless MIMO channels and performing channel estimation based on posterior sampling at test time. We derive theoretical robustness guarantees for channel estimation with posterior sampling in single-input single-output scenarios, and experimentally verify performance in the MIMO setting. Our results in simulated channels show competitive in-distribution performance, and robust out-of-distribution performance, with gains of up to $5$ dB in end-to-end coded communication performance compared to supervised deep learning methods. Simulations on the number of pilots show that high fidelity channel estimation with $25$% pilot density is possible for MIMO channel sizes of up to $64 \times 256$. Complexity analysis reveals that model size can efficiently trade performance for estimation latency, and that the proposed approach is competitive with compressed sensing in terms of floating-point operation (FLOP) count.
translated by 谷歌翻译
2D断层摄影重建的目标是恢复从各种视图中投影的图像。通常推测,与突起相关联的投影角度预先已知。然而,在某些情况下,这些角度仅仅是近似或完全未知的。从一系列随机投影重建图像变得更具挑战性。我们提出了一种基于对侵犯学习的方法来恢复图像和投影角度分布,通过将测量的经验分布与所生成的数据匹配。通过在发电机和基于Wassersein生成的对抗网络结构之间解决一个MIN-MAX游戏来实现分布。为了通过梯度反向传播容纳投影角度分布的更新,我们使用来自离散分布的样本的Gumbel-Softmax Reparameterization估计损失。我们的理论分析验证了图像的独特恢复和投影分布到收敛时的旋转和反射。我们广泛的数值实验展示了我们在噪声污染下准确恢复图像和投影角度分布的方法的潜力。
translated by 谷歌翻译
Erroneous correspondences between samples and their respective channel or target commonly arise in several real-world applications. For instance, whole-brain calcium imaging of freely moving organisms, multiple target tracking or multi-person contactless vital sign monitoring may be severely affected by mismatched sample-channel assignments. To systematically address this fundamental problem, we pose it as a signal reconstruction problem where we have lost correspondences between the samples and their respective channels. We show that under the assumption that the signals of interest admit a sparse representation over an overcomplete dictionary, unique signal recovery is possible. Our derivations reveal that the problem is equivalent to a structured unlabeled sensing problem without precise knowledge of the sensing matrix. Unfortunately, existing methods are neither robust to errors in the regressors nor do they exploit the structure of the problem. Therefore, we propose a novel robust two-step approach for the reconstruction of shuffled sparse signals. The performance and robustness of the proposed approach is illustrated in an application of whole-brain calcium imaging in computational neuroscience. The proposed framework can be generalized to sparse signal representations other than the ones considered in this work to be applied in a variety of real-world problems with imprecise measurement or channel assignment.
translated by 谷歌翻译
传统上,信号处理,通信和控制一直依赖经典的统计建模技术。这种基于模型的方法利用代表基本物理,先验信息和其他领域知识的数学公式。简单的经典模型有用,但对不准确性敏感,当真实系统显示复杂或动态行为时,可能会导致性能差。另一方面,随着数据集变得丰富,现代深度学习管道的力量增加,纯粹的数据驱动的方法越来越流行。深度神经网络(DNNS)使用通用体系结构,这些架构学会从数据中运行,并表现出出色的性能,尤其是针对受监督的问题。但是,DNN通常需要大量的数据和巨大的计算资源,从而限制了它们对某些信号处理方案的适用性。我们对将原则数学模型与数据驱动系统相结合的混合技术感兴趣,以从两种方法的优势中受益。这种基于模型的深度学习方法通​​过为特定问题设计的数学结构以及从有限的数据中学习来利用这两个部分领域知识。在本文中,我们调查了研究和设计基于模型的深度学习系统的领先方法。我们根据其推理机制将基于混合模型/数据驱动的系统分为类别。我们对以系统的方式将基于模型的算法与深度学习以及具体指南和详细的信号处理示例相结合的领先方法进行了全面综述。我们的目的是促进对未来系统的设计和研究信号处理和机器学习的交集,这些系统结合了两个领域的优势。
translated by 谷歌翻译
我们使用张量奇异值分解(T-SVD)代数框架提出了一种新的快速流算法,用于抵抗缺失的低管级张量的缺失条目。我们展示T-SVD是三阶张量的研究型块术语分解的专业化,我们在该模型下呈现了一种算法,可以跟踪从不完全流2-D数据的可自由子模块。所提出的算法使用来自子空间的基层歧管的增量梯度下降的原理,以解决线性复杂度和时间样本的恒定存储器的张量完成问题。我们为我们的算法提供了局部预期的线性收敛结果。我们的经验结果在精确态度上具有竞争力,但在计算时间内比实际应用上的最先进的张量完成算法更快,以在有限的采样下恢复时间化疗和MRI数据。
translated by 谷歌翻译
Countless signal processing applications include the reconstruction of signals from few indirect linear measurements. The design of effective measurement operators is typically constrained by the underlying hardware and physics, posing a challenging and often even discrete optimization task. While the potential of gradient-based learning via the unrolling of iterative recovery algorithms has been demonstrated, it has remained unclear how to leverage this technique when the set of admissible measurement operators is structured and discrete. We tackle this problem by combining unrolled optimization with Gumbel reparametrizations, which enable the computation of low-variance gradient estimates of categorical random variables. Our approach is formalized by GLODISMO (Gradient-based Learning of DIscrete Structured Measurement Operators). This novel method is easy-to-implement, computationally efficient, and extendable due to its compatibility with automatic differentiation. We empirically demonstrate the performance and flexibility of GLODISMO in several prototypical signal recovery applications, verifying that the learned measurement matrices outperform conventional designs based on randomization as well as discrete optimization baselines.
translated by 谷歌翻译
未知视图断层扫描(UVT)从其2D投影以未知的随机取向重建了3D密度图。从Kam(Kam(1980))开始的工作线采用了具有旋转不变的傅立叶特征的矩(MOM)方法,可以在频域中求解UVT,假设方向是均匀分布的。这项工作系列包括基于矩阵分解的最新正交矩阵检索(OMR)方法,虽然优雅地需要有关无法可用的密度的侧面信息,或者无法充分强大。为了使OMR摆脱这些限制,我们建议通过要求它们相互一致来共同恢复密度图和正交矩阵。我们通过deno的参考投影和非负约束来使所得的非凸优化问题正常。这是通过空间自相关功能的新闭合表达式启用的。此外,我们设计了一个易于计算的初始密度图,可有效地降低重建问题的非凸性。实验结果表明,在典型的3D UVT的典型低SNR场景中,具有空间共识的拟议的OMR比以前最新的OMR方法更好。
translated by 谷歌翻译
本文提出了一种对无线通信中的一类主动感测问题的深度学习方法,其中代理在预定数量的时间帧上与环境顺序地交互以收集信息,以便为最大化一些实用程序函数来执行感测或致动任务。在这样的主动学习设置中,代理需要根据到目前为止所做的观察结果来依次设计自适应感测策略。为了解决如此挑战的问题,其中历史观察的维度随着时间的推移而增加,我们建议使用长期短期记忆(LSTM)网络来利用观察序列中的时间相关性,并将每个观察映射到固定的尺寸状态信息矢量。然后,我们使用深神经网络(DNN)将LSTM状态映射到每个时间帧到下一个测量步骤的设计。最后,我们采用另一个DNN将最终的LSTM状态映射到所需的解决方案。我们调查了无线通信中建议框架的性能框架的性能。特别地,我们考虑用于MMWAVE光束对准的自适应波束形成问题和反射对准的自适应可重构智能表面感测问题。数值结果表明,所提出的深度主动传感策略优于现有的自适应或非一种非应用感测方案。
translated by 谷歌翻译
随着科学和工程的越来越多的数据驱动,优化的作用已经扩展到几乎触及数据分析管道的每个阶段,从信号和数据获取到建模和预测。实践中遇到的优化问题通常是非convex。尽管挑战因问题而异,但非概念性的一个共同来源是数据或测量模型中的非线性。非线性模型通常表现出对称性,创建具有多种等效解决方案的复杂,非凸客观的景观。然而,简单的方法(例如,梯度下降)在实践中通常表现出色。这项调查的目的是突出一类可进行的非概念问题,可以通过对称性的镜头来理解。这些问题表现出特征性的几何结构:局部最小化是单个“地面真实”解决方案的对称副本,而其他关键点出现在地面真理的对称副本的平衡叠加上,并在破坏对称性的方向上表现出负曲率。该结构使有效的方法获得了全局最小化。我们讨论了由于成像,信号处理和数据分析中广泛的问题而引起的这种现象的示例。我们强调了对称性在塑造客观景观中的关键作用,并讨论旋转和离散对称性的不同作用。该区域充满了观察到的现象和开放问题。我们通过强调未来研究的方向结束。
translated by 谷歌翻译
由于其快速和低功率配置,可重新配置的智能表面(RISS)最近被视为未来无线网络的节能解决方案,这在实现大规模连通性和低延迟通信方面具有增加的潜力。基于RIS的系统中的准确且低空的通道估计是通常的RIS单元元素及其独特的硬件约束,这是最关键的挑战之一。在本文中,我们专注于RIS授权的多用户多用户多输入单输出(MISO)上行链路通信系统的上行链路,并根据并行因子分解提出了一个通道估计框架,以展开所得的级联通道模型。我们为基站和RIS之间的渠道以及RIS与用户之间的渠道提供了两种迭代估计算法。一个基于交替的最小二乘(ALS),而另一个使用向量近似消息传递到迭代的迭代中,从估计的向量重建了两个未知的通道。为了从理论上评估基于ALS的算法的性能,我们得出了其估计值CRAM \'ER-RAO BOND(CRB)。我们还通过估计的通道和基本站的不同预码方案讨论了可实现的总和率计算。我们的广泛仿真结果表明,我们的算法表现优于基准方案,并且ALS技术可实现CRB。还证明,使用估计通道的总和率总是在各种设置下达到完美通道的总和,从而验证了提出的估计算法的有效性和鲁棒性。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
在本文中,我们研究了主要成分分析的问题,并采用了生成建模假设,采用了一个普通矩阵的通用模型,该模型包括涉及尖峰矩阵恢复和相位检索在内的明显特殊情况。关键假设是,基础信号位于$ l $ -Lipschitz连续生成模型的范围内,该模型具有有限的$ k $二维输入。我们提出了一个二次估计器,并证明它享有顺序的统计率$ \ sqrt {\ frac {k \ log l} {m} {m}} $,其中$ m $是样本的数量。我们还提供了近乎匹配的算法独立的下限。此外,我们提供了经典功率方法的一种变体,该方法将计算的数据投射到每次迭代期间生成模型的范围内。我们表明,在适当的条件下,该方法将指数级的快速收敛到达到上述统计率的点。我们在各种图像数据集上对峰值矩阵和相位检索模型进行实验,并说明了我们方法的性能提高到经典功率方法,并为稀疏主组件分析设计了截断的功率方法。
translated by 谷歌翻译
我们提出了一个基于一般学习的框架,用于解决非平滑和非凸图像重建问题。我们将正则函数建模为$ l_ {2,1} $ norm的组成,并将平滑但非convex功能映射参数化为深卷积神经网络。我们通过利用Nesterov的平滑技术和残留学习的概念来开发一种可证明的趋同的下降型算法来解决非平滑非概念最小化问题,并学习网络参数,以使算法的输出与培训数据中的参考匹配。我们的方法用途广泛,因为人们可以将各种现代网络结构用于正规化,而所得网络继承了算法的保证收敛性。我们还表明,所提出的网络是参数有效的,其性能与实践中各种图像重建问题中的最新方法相比有利。
translated by 谷歌翻译
本文研究了采用有限字母信令的多输入多输出(MIMO)通信信道的线性预编码问题。由于昂贵的星座限制的相互信息,现有解决方案通常由于昂贵的计算而遭受高计算复杂性。与现有的作品相比,本文采取了解决MIMO预编码问题的不同路径。即,提出了一种基于深度学习的数据驱动方法。在离线训练阶段,深度神经网络在一组MIMO信道矩阵上了解最佳解决方案。这允许在在线推理阶段中降低预编码优化的计算复杂性。数值结果证明了所提出的解决方案Vis-\“A-Vis的效率”在显着降低的复杂性和近乎最佳性能方面的现有预编码算法。
translated by 谷歌翻译
给定有限数量的训练数据样本的分类的基本任务被考虑了具有已知参数统计模型的物理系统。基于独立的学习和统计模型的分类器面临使用小型训练集实现分类任务的主要挑战。具体地,单独依赖基于物理的统计模型的分类器通常遭受它们无法适当地调整底层的不可观察的参数,这导致系统行为的不匹配表示。另一方面,基于学习的分类器通常依赖于来自底层物理过程的大量培训数据,这在最实际的情况下可能不可行。本文提出了一种混合分类方法 - 被称为亚牙线的菌丝 - 利用基于物理的统计模型和基于学习的分类器。所提出的解决方案基于猜想,即通过融合它们各自的优势,刺鼠线将减轻与基于学习和统计模型的分类器的各个方法相关的挑战。所提出的混合方法首先使用可用(次优)统计估计程序来估计不可观察的模型参数,随后使用基于物理的统计模型来生成合成数据。然后,培训数据样本与基于学习的分类器中的合成数据结合到基于神经网络的域 - 对抗训练。具体地,为了解决不匹配问题,分类器将从训练数据和合成数据的映射学习到公共特征空间。同时,培训分类器以在该空间内找到判别特征,以满足分类任务。
translated by 谷歌翻译