Recently, with the application of deep learning in the remote sensing image (RSI) field, the classification accuracy of the RSI has been dramatically improved compared with traditional technology. However, even the state-of-the-art object recognition convolutional neural networks are fooled by the universal adversarial perturbation (UAP). The research on UAP is mostly limited to ordinary images, and RSIs have not been studied. To explore the basic characteristics of UAPs of RSIs, this paper proposes a novel method combining an encoder-decoder network with an attention mechanism to generate the UAP of RSIs. Firstly, the former is used to generate the UAP, which can learn the distribution of perturbations better, and then the latter is used to find the sensitive regions concerned by the RSI classification model. Finally, the generated regions are used to fine-tune the perturbation making the model misclassified with fewer perturbations. The experimental results show that the UAP can make the classification model misclassify, and the attack success rate of our proposed method on the RSI data set is as high as 97.09%.
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
深度神经网络在许多重要的遥感任务中取得了巨大的成功。然而,不应忽略它们对对抗性例子的脆弱性。在这项研究中,我们第一次系统地在遥感数据中系统地分析了普遍的对抗示例,而没有受害者模型的任何知识。具体而言,我们提出了一种新型的黑盒对抗攻击方法,即混合攻击及其简单的变体混合尺寸攻击,用于遥感数据。提出方法的关键思想是通过攻击给定替代模型的浅层层中的特征来找到不同网络之间的共同漏洞。尽管它们很简单,但提出的方法仍可以生成可转移的对抗性示例,这些示例欺骗了场景分类和语义分割任务的大多数最新深层神经网络,并具有很高的成功率。我们进一步在名为AUAE-RS的数据集中提供了生成的通用对抗示例,该数据集是第一个在遥感字段中提供黑色框对面样本的数据集。我们希望阿联酋可以用作基准,以帮助研究人员设计具有对遥感领域对抗攻击的强烈抵抗力的深神经网络。代码和阿联酋-RS数据集可在线获得(https://github.com/yonghaoxu/uae-rs)。
translated by 谷歌翻译
Data augmentation is a widely used technique for enhancing the generalization ability of convolutional neural networks (CNNs) in image classification tasks. Occlusion is a critical factor that affects on the generalization ability of image classification models. In order to generate new samples, existing data augmentation methods based on information deletion simulate occluded samples by randomly removing some areas in the images. However, those methods cannot delete areas of the images according to their structural features of the images. To solve those problems, we propose a novel data augmentation method, AdvMask, for image classification tasks. Instead of randomly removing areas in the images, AdvMask obtains the key points that have the greatest influence on the classification results via an end-to-end sparse adversarial attack module. Therefore, we can find the most sensitive points of the classification results without considering the diversity of various image appearance and shapes of the object of interest. In addition, a data augmentation module is employed to generate structured masks based on the key points, thus forcing the CNN classification models to seek other relevant content when the most discriminative content is hidden. AdvMask can effectively improve the performance of classification models in the testing process. The experimental results on various datasets and CNN models verify that the proposed method outperforms other previous data augmentation methods in image classification tasks.
translated by 谷歌翻译
深度神经网络(DNN)已被证明是针对对抗性示例(AE)的脆弱性,这些例子是恶意设计用于欺骗目标模型的。添加了不可察觉的对抗扰动的正常示例(NES)可能是对DNN的安全威胁。尽管现有的AES检测方法已经达到了很高的精度,但他们未能利用检测到的AE的信息。因此,基于高维扰动提取,我们提出了一种无模型的AES检测方法,其整个过程没有查询受害者模型。研究表明,DNN对高维度敏感。对抗示例中隐藏的对抗性扰动属于高维特征,高维特征是高度预测性和非持胸膜的。 DNN比其他人从高维数据中学习更多细节。在我们的方法中,扰动提取器可以从AES作为高维特征提取对抗扰动,然后训练有素的AES鉴别器确定输入是否为AE。实验结果表明,所提出的方法不仅可以以高精度检测对抗示例,还可以检测AE的特定类别。同时,提取的扰动可用于将AE恢复到NES。
translated by 谷歌翻译
随着硬件和算法的开发,ASR(自动语音识别)系统发展了很多。随着模型变得越来越简单,开发和部署的困难变得更加容易,ASR系统正越来越接近我们的生活。一方面,我们经常使用ASR的应用程序或API来生成字幕和记录会议。另一方面,智能扬声器和自动驾驶汽车依靠ASR系统来控制Aiot设备。在过去的几年中,对ASR系统的攻击攻击有很多作品。通过在波形中添加小的扰动,识别结果有很大的不同。在本文中,我们描述了ASR系统的发展,攻击的不同假设以及如何评估这些攻击。接下来,我们在两个攻击假设中介绍了有关对抗性示例攻击的当前作品:白框攻击和黑框攻击。与其他调查不同,我们更多地关注它们在ASR系统中扰动波形,这些攻击之间的关系及其实现方法之间的层。我们专注于他们作品的效果。
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译
Adversarial patch is an important form of real-world adversarial attack that brings serious risks to the robustness of deep neural networks. Previous methods generate adversarial patches by either optimizing their perturbation values while fixing the pasting position or manipulating the position while fixing the patch's content. This reveals that the positions and perturbations are both important to the adversarial attack. For that, in this paper, we propose a novel method to simultaneously optimize the position and perturbation for an adversarial patch, and thus obtain a high attack success rate in the black-box setting. Technically, we regard the patch's position, the pre-designed hyper-parameters to determine the patch's perturbations as the variables, and utilize the reinforcement learning framework to simultaneously solve for the optimal solution based on the rewards obtained from the target model with a small number of queries. Extensive experiments are conducted on the Face Recognition (FR) task, and results on four representative FR models show that our method can significantly improve the attack success rate and query efficiency. Besides, experiments on the commercial FR service and physical environments confirm its practical application value. We also extend our method to the traffic sign recognition task to verify its generalization ability.
translated by 谷歌翻译
深入学习在许多任务中获得了越来越优秀的表现,例如自主驾驶和面部识别,并且也受到不同类型的攻击挑战。在图像中添加人类视力不可察觉的扰动可以误导神经网络模型以高信任获得错误的结果。对手示例是已经添加的图像,其具有特定的噪声来误导深神经网络模型,但是向图像添加噪声会破坏原始数据,使得在数字取证和其他字段中无用。为了防止非法或未授权访问图像数据,例如人面,并确保不对法律使用的情感可逆的逆势攻击技术是升高的。原始图像可以从其可逆的对抗性示例中恢复。然而,现有的可逆对抗例子生成策略均为传统的难以察觉的对抗性扰动设计。如何获得局部可见的对抗性扰动的可逆性?在本文中,我们提出了一种基于局部视觉逆势扰动产生可逆的对抗性实例的新方法。通过可逆数据隐藏技术将图像恢复所需的信息嵌入到超出对抗贴片之外的区域。为了降低图像失真并提高视觉质量,采用无损压缩和嵌入原理。 Imagenet DataSet上的实验表明,我们的方法可以在确保攻击性能的同时恢复无错误的原始图像。
translated by 谷歌翻译
Deep Neural Networks have been widely used in many fields. However, studies have shown that DNNs are easily attacked by adversarial examples, which have tiny perturbations and greatly mislead the correct judgment of DNNs. Furthermore, even if malicious attackers cannot obtain all the underlying model parameters, they can use adversarial examples to attack various DNN-based task systems. Researchers have proposed various defense methods to protect DNNs, such as reducing the aggressiveness of adversarial examples by preprocessing or improving the robustness of the model by adding modules. However, some defense methods are only effective for small-scale examples or small perturbations but have limited defense effects for adversarial examples with large perturbations. This paper assigns different defense strategies to adversarial perturbations of different strengths by grading the perturbations on the input examples. Experimental results show that the proposed method effectively improves defense performance. In addition, the proposed method does not modify any task model, which can be used as a preprocessing module, which significantly reduces the deployment cost in practical applications.
translated by 谷歌翻译
Neural networks are vulnerable to adversarial examples, which poses a threat to their application in security sensitive systems. We propose high-level representation guided denoiser (HGD) as a defense for image classification. Standard denoiser suffers from the error amplification effect, in which small residual adversarial noise is progressively amplified and leads to wrong classifications. HGD overcomes this problem by using a loss function defined as the difference between the target model's outputs activated by the clean image and denoised image. Compared with ensemble adversarial training which is the state-of-the-art defending method on large images, HGD has three advantages. First, with HGD as a defense, the target model is more robust to either white-box or black-box adversarial attacks. Second, HGD can be trained on a small subset of the images and generalizes well to other images and unseen classes. Third, HGD can be transferred to defend models other than the one guiding it. In NIPS competition on defense against adversarial attacks, our HGD solution won the first place and outperformed other models by a large margin. 1 * Equal contribution.
translated by 谷歌翻译
基于深度学习的图像识别系统已广泛部署在当今世界的移动设备上。然而,在最近的研究中,深入学习模型被证明易受对抗的例子。一种逆势例的一个变种,称为对抗性补丁,由于其强烈的攻击能力而引起了研究人员的注意。虽然对抗性补丁实现了高攻击成功率,但由于补丁和原始图像之间的视觉不一致,它们很容易被检测到。此外,它通常需要对文献中的对抗斑块产生的大量数据,这是计算昂贵且耗时的。为了解决这些挑战,我们提出一种方法来产生具有一个单一图像的不起眼的对抗性斑块。在我们的方法中,我们首先通过利用多尺度发生器和鉴别器来决定基于受害者模型的感知敏感性的补丁位置,然后以粗糙的方式产生对抗性斑块。鼓励修补程序与具有对抗性训练的背景图像一致,同时保留强烈的攻击能力。我们的方法显示了白盒设置中的强烈攻击能力以及通过对具有不同架构和培训方法的各种型号的广泛实验,通过广泛的实验进行黑盒设置的优异转移性。与其他对抗贴片相比,我们的对抗斑块具有最大忽略的风险,并且可以避免人类观察,这是由显着性图和用户评估结果的插图支持的人类观察。最后,我们表明我们的对抗性补丁可以应用于物理世界。
translated by 谷歌翻译
With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called adversarial examples. Adversarial perturbations are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying deep neural networks in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for deep neural networks, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples. In addition, three major challenges in adversarial examples and the potential solutions are discussed.
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
共同突出的对象检测(Cosod)最近实现了重大进展,并在检索相关任务中发挥了关键作用。但是,它不可避免地构成了完全新的安全问题,即,高度个人和敏感的内容可能会通过强大的COSOD方法提取。在本文中,我们从对抗性攻击的角度解决了这个问题,并确定了一种小说任务:对抗的共同显着性攻击。特别地,给定从包含某种常见和突出对象的一组图像中选择的图像,我们的目标是生成可能误导Cosod方法以预测不正确的共突变区域的侵略性版本。注意,与分类的一般白盒对抗攻击相比,这项新任务面临两种额外的挑战:(1)由于本集团中图像的不同外观,成功率低; (2)Cosod方法的低可转换性由于Cosod管道之间的差异相当差异。为了解决这些挑战,我们提出了第一个黑匣子联合对抗的暴露和噪声攻击(JADENA),在那里我们共同和本地调整图像的曝光和添加剂扰动,根据新设计的高特征级对比度敏感损失功能。我们的方法,没有关于最先进的Cosod方法的任何信息,导致各种共同显着性检测数据集的显着性能下降,并使共同突出的物体无法检测到。这在适当地确保目前在互联网上共享的大量个人照片中可以具有很强的实际效益。此外,我们的方法是用于评估Cosod方法的稳健性的指标的潜力。
translated by 谷歌翻译
利用3D点云数据已经成为在面部识别和自动驾驶等许多领域部署人工智能的迫切需要。然而,3D点云的深度学习仍然容易受到对抗的攻击,例如迭代攻击,点转换攻击和生成攻击。这些攻击需要在严格的界限内限制对抗性示例的扰动,导致不切实际的逆势3D点云。在本文中,我们提出了对普遍的图形 - 卷积生成的对抗网络(ADVGCGAN)从头开始产生视觉上现实的对抗3D点云。具体地,我们使用图形卷积发电机和带有辅助分类器的鉴别器来生成现实点云,从真实3D数据学习潜在分布。不受限制的对抗性攻击损失纳入GaN的特殊逆势训练中,使得发电机能够产生对抗实例来欺骗目标网络。与现有的最先进的攻击方法相比,实验结果表明了我们不受限制的对抗性攻击方法的有效性,具有更高的攻击成功率和视觉质量。此外,拟议的Advgcan可以实现更好的防御模型和比具有强烈伪装的现有攻击方法更好的转移性能。
translated by 谷歌翻译
对抗性攻击提供了研究深层学习模式的稳健性的好方法。基于转移的黑盒攻击中的一种方法利用了几种图像变换操作来提高对逆势示例的可转换性,这是有效的,但不能考虑输入图像的特定特征。在这项工作中,我们提出了一种新颖的架构,称为自适应图像转换学习者(AIT1),其将不同的图像变换操作结合到统一的框架中,以进一步提高对抗性示例的可转移性。与现有工作中使用的固定组合变换不同,我们精心设计的转换学习者自适应地选择特定于输入图像的图像变换最有效的组合。关于Imagenet的广泛实验表明,我们的方法在各种设置下显着提高了正常培训的模型和防御模型的攻击成功率。
translated by 谷歌翻译
In this work, we study the black-box targeted attack problem from the model discrepancy perspective. On the theoretical side, we present a generalization error bound for black-box targeted attacks, which gives a rigorous theoretical analysis for guaranteeing the success of the attack. We reveal that the attack error on a target model mainly depends on empirical attack error on the substitute model and the maximum model discrepancy among substitute models. On the algorithmic side, we derive a new algorithm for black-box targeted attacks based on our theoretical analysis, in which we additionally minimize the maximum model discrepancy(M3D) of the substitute models when training the generator to generate adversarial examples. In this way, our model is capable of crafting highly transferable adversarial examples that are robust to the model variation, thus improving the success rate for attacking the black-box model. We conduct extensive experiments on the ImageNet dataset with different classification models, and our proposed approach outperforms existing state-of-the-art methods by a significant margin. Our codes will be released.
translated by 谷歌翻译
虽然深入学习模型取得了前所未有的成功,但他们对逆势袭击的脆弱性引起了越来越关注,特别是在部署安全关键域名时。为了解决挑战,已经提出了鲁棒性改善的许多辩护策略,包括反应性和积极主动。从图像特征空间的角度来看,由于特征的偏移,其中一些人无法达到满足结果。此外,模型学习的功能与分类结果无直接相关。与他们不同,我们考虑基本上从模型内部进行防御方法,并在攻击前后调查神经元行为。我们观察到,通过大大改变为正确标签的神经元大大改变神经元来误导模型。受其激励,我们介绍了神经元影响的概念,进一步将神经元分为前,中间和尾部。基于它,我们提出神经元水平逆扰动(NIP),第一神经元水平反应防御方法对抗对抗攻击。通过强化前神经元并削弱尾部中的弱化,辊隙可以消除几乎所有的对抗扰动,同时仍然保持高良好的精度。此外,它可以通过适应性,尤其是更大的扰动来应对不同的扰动。在三个数据集和六种模型上进行的综合实验表明,NIP优于最先进的基线对抗11个对抗性攻击。我们进一步通过神经元激活和可视化提供可解释的证据,以便更好地理解。
translated by 谷歌翻译