我们通过将回归或分类函数的全局解释分解为主组件和任意顺序的相互作用组件的总和。当添加由因果解释激励的识别约束时,我们发现Q交互作用是该约束的独特解决方案。在这里,Q表示分解中存在的最高相互作用。我们的结果为具有各种实践和理论含义的外形值提供了新的视角:如果将塑形值分解为主要和所有相互作用效应,它们提供了带有因果解释的全球解释。原则上,分解可以应用于任何机器学习模型。但是,由于可能的相互作用的数量随特征的数量呈指数增长,因此精确的计算仅对于适合低维结构或这些组合的方法可行。我们为梯度增压树提供了一种算法和有效的实施(Xgboost和随机种植的森林,计算出这种分解。进行的实验表明,我们的方法提供了有意义的解释,并揭示了更高阶的相互作用。我们还通过利用新见解的进一步的潜力来利用新见解的进一步的潜力。全球解释,用于激励特征重要性的新量度,以及通过删除事后删除来减少直接和间接偏见。
translated by 谷歌翻译
在可解释的机器学习中,当地的事后解释算法和固有的可解释模型通常被视为竞争方法。在这项工作中,提供了有关Shapley Values的新颖观点,即Shapley Values,这是一种突出的事后解释技术,并表明它与玻璃盒 - 玻璃盒 - gams密切相关,Glassbox-Gam是一种流行的可解释模型。我们介绍了$ n $ -Shapley值,这是Shapley值的自然扩展,该值解释了具有交互条款的个人预测,直到$ n $。随着$ n $的增加,$ n $ shapley的值会收敛于Shapley-Gam,这是原始功能的独特确定分解。从Shapley-GAM中,我们可以计算出任意秩序的Shapley值,从而确切的见解对这些解释的局限性。然后,我们证明Shapley值恢复了订单$ n $的通用添加剂模型,假设我们允许交互条款在解释中订购$ n $。这意味着原始的Shapley值恢复了玻璃盒煤气。在技​​术端,我们表明,选择值函数的不同方式与原始函数的不同功能分解之间存在一对一的对应关系。这为如何选择值函数的问题提供了一个新的观点。我们还对各种标准分类器中存在的可变相互作用程度进行了经验分析,并讨论了我们结果对算法解释的含义。一个用于计算$ n $ shapley值的Python软件包,并在本文中复制结果,请访问\ url {https://github.com/tml-tuebingen/nshap}。
translated by 谷歌翻译
Shap是一种衡量机器学习模型中可变重要性的流行方法。在本文中,我们研究了用于估计外形评分的算法,并表明它是功能性方差分析分解的转换。我们使用此连接表明,在Shap近似中的挑战主要与选择功能分布的选择以及估计的$ 2^p $ ANOVA条款的数量有关。我们认为,在这种情况下,机器学习解释性和敏感性分析之间的联系是有照明的,但是直接的实际后果并不明显,因为这两个领域面临着不同的约束。机器学习的解释性问题模型可评估,但通常具有数百个(即使不是数千个)功能。敏感性分析通常处理物理或工程的模型,这些模型可能非常耗时,但在相对较小的输入空间上运行。
translated by 谷歌翻译
由于其强大的理论属性,Shapley的价值已经变得非常流行,以解释黑匣子模型做出的预测。不幸的是,大多数计算沙普利值的现有技术在计算上非常昂贵。我们提出了PDD-shap,这是一种使用基于ANOVA的功能分解模型来近似所解释的黑框模型的算法。这使我们能够比大型数据集的现有方法快地计算出Shapley值的数量级,从而大大降低了计算Shapley值的摊销成本,当需要解释许多预测时。
translated by 谷歌翻译
Originating from cooperative game theory, Shapley values have become one of the most widely used measures for variable importance in applied Machine Learning. However, the statistical understanding of Shapley values is still limited. In this paper, we take a nonparametric (or smoothing) perspective by introducing Shapley curves as a local measure of variable importance. We propose two estimation strategies and derive the consistency and asymptotic normality both under independence and dependence among the features. This allows us to construct confidence intervals and conduct inference on the estimated Shapley curves. The asymptotic results are validated in extensive experiments. In an empirical application, we analyze which attributes drive the prices of vehicles.
translated by 谷歌翻译
基于Shapley值的功能归因在解释机器学习模型中很受欢迎。但是,从理论和计算的角度来看,它们的估计是复杂的。我们将这种复杂性分解为两个因素:(1)〜删除特征信息的方法,以及(2)〜可拖动估计策略。这两个因素提供了一种天然镜头,我们可以更好地理解和比较24种不同的算法。基于各种特征删除方法,我们描述了多种类型的Shapley值特征属性和计算每个类型的方法。然后,基于可进行的估计策略,我们表征了两个不同的方法家族:模型 - 不合时宜的和模型特定的近似值。对于模型 - 不合稳定的近似值,我们基准了广泛的估计方法,并将其与Shapley值的替代性但等效的特征联系起来。对于特定于模型的近似值,我们阐明了对每种方法的线性,树和深模型的障碍至关重要的假设。最后,我们确定了文献中的差距以及有希望的未来研究方向。
translated by 谷歌翻译
即使有效,模型的使用也必须伴随着转换数据的各个级别的理解(上游和下游)。因此,需求增加以定义单个数据与算法可以根据其分析可以做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。
translated by 谷歌翻译
由于其理想的特性,与Shapley相关的技术已成为全球和局部解释工具的关注。但是,他们使用条件期望的计算在计算上是昂贵的。文献中建议的近似方法有局限性。本文提出了基于条件期望的基于替代模型的树来计算沙普利和塑造值。仿真研究表明,拟议的算法可提供准确性的提高,统一全球沙普利和外形解释,而阈值方法为折衷运行时间和准确性提供了一种方法。
translated by 谷歌翻译
测量黑匣子预测算法中变量重要性的最流行方法是利用合成输入,这些输入结合了来自多个受试者的预测变量。这些输入可能是不可能的,身体上不可能的,甚至在逻辑上是不可能的。结果,对这种情况的预测可以基于数据,这与对黑匣子的训练非常不同。我们认为,当解释使用此类值时,用户不能相信预测算法的决定的解释。取而代之的是,我们主张一种称为同类沙普利的方法,该方法基于经济游戏理论,与大多数其他游戏理论方法不同,它仅使用实际观察到的数据来量化可变重要性。莎普利队的同伙通过缩小判断的主题的缩小,被认为与一个或多个功能上的目标主题相似。如果使用它来缩小队列对队列平均值有很大的不同,则功能很重要。我们在算法公平问题上进行了说明,其中必须将重要性归因于未经训练模型的保护变量。对于每个主题和每个预测变量,我们可以计算该预测因子对受试者的预测响应或对其实际响应的重要性。这些值可以汇总,例如在所有黑色受试者上,我们提出了一个贝叶斯引导程序来量化个人和骨料莎普利值的不确定性。
translated by 谷歌翻译
探索黑盒机器学习(ML)模型的重要技术称为Shap(Shapley添加说明)。Shap值以公平的方式将预测分解为功能的贡献。我们将证明,对于具有添加性建模的一些或所有功能的增强树模型,此类特征的外形依赖图与其部分依赖图相对应,直到垂直移动。我们用XGBoost说明了结果。
translated by 谷歌翻译
Besides accuracy, recent studies on machine learning models have been addressing the question on how the obtained results can be interpreted. Indeed, while complex machine learning models are able to provide very good results in terms of accuracy even in challenging applications, it is difficult to interpret them. Aiming at providing some interpretability for such models, one of the most famous methods, called SHAP, borrows the Shapley value concept from game theory in order to locally explain the predicted outcome of an instance of interest. As the SHAP values calculation needs previous computations on all possible coalitions of attributes, its computational cost can be very high. Therefore, a SHAP-based method called Kernel SHAP adopts an efficient strategy that approximate such values with less computational effort. In this paper, we also address local interpretability in machine learning based on Shapley values. Firstly, we provide a straightforward formulation of a SHAP-based method for local interpretability by using the Choquet integral, which leads to both Shapley values and Shapley interaction indices. Moreover, we also adopt the concept of $k$-additive games from game theory, which contributes to reduce the computational effort when estimating the SHAP values. The obtained results attest that our proposal needs less computations on coalitions of attributes to approximate the SHAP values.
translated by 谷歌翻译
This paper proposes a novel approach to explain the predictions made by data-driven methods. Since such predictions rely heavily on the data used for training, explanations that convey information about how the training data affects the predictions are useful. The paper proposes a novel approach to quantify how different data-clusters of the training data affect a prediction. The quantification is based on Shapley values, a concept which originates from coalitional game theory, developed to fairly distribute the payout among a set of cooperating players. A player's Shapley value is a measure of that player's contribution. Shapley values are often used to quantify feature importance, ie. how features affect a prediction. This paper extends this to cluster importance, letting clusters of the training data act as players in a game where the predictions are the payouts. The novel methodology proposed in this paper lets us explore and investigate how different clusters of the training data affect the predictions made by any black-box model, allowing new aspects of the reasoning and inner workings of a prediction model to be conveyed to the users. The methodology is fundamentally different from existing explanation methods, providing insight which would not be available otherwise, and should complement existing explanation methods, including explanations based on feature importance.
translated by 谷歌翻译
Shapley values are ubiquitous in interpretable Machine Learning due to their strong theoretical background and efficient implementation in the SHAP library. Computing these values previously induced an exponential cost with respect to the number of input features of an opaque model. Now, with efficient implementations such as Interventional TreeSHAP, this exponential burden is alleviated assuming one is explaining ensembles of decision trees. Although Interventional TreeSHAP has risen in popularity, it still lacks a formal proof of how/why it works. We provide such proof with the aim of not only increasing the transparency of the algorithm but also to encourage further development of these ideas. Notably, our proof for Interventional TreeSHAP is easily adapted to Shapley-Taylor indices and one-hot-encoded features.
translated by 谷歌翻译
随机森林已被广泛用于其提供的所谓重要措施,在输入变量的相关性来预测某一输出全局(每个数据集)级洞察能力。在另一方面,根据沙普利值方法已被引入特征相关的基于树的模型分析细化到本地(每个实例)的水平。在这种情况下,我们首先证明杂质(MDI)变量重要性得分的全球平均减少对应的Shapley值在某些条件下。然后,我们推导出变量相关的本地MDI重要的措施,这与全球MDI衡量一个非常自然的连接,并且可以与局部特征相关的一个新概念。我们进一步联系当地MDI重要性有关与沙普利值和从文献中有关措施的光进行讨论。这些措施是通过实验在几个分类和回归问题的说明。
translated by 谷歌翻译
While preference modelling is becoming one of the pillars of machine learning, the problem of preference explanation remains challenging and underexplored. In this paper, we propose \textsc{Pref-SHAP}, a Shapley value-based model explanation framework for pairwise comparison data. We derive the appropriate value functions for preference models and further extend the framework to model and explain \emph{context specific} information, such as the surface type in a tennis game. To demonstrate the utility of \textsc{Pref-SHAP}, we apply our method to a variety of synthetic and real-world datasets and show that richer and more insightful explanations can be obtained over the baseline.
translated by 谷歌翻译
目前,在统计严格的方法(如线性回归或添加剂花纹)与使用神经网络的强大深度方法之间的性能差距很大。以前试图缩小此差距的工作未能完全研究成倍增长的功能组合数量,这些功能组合在训练过程中会自动考虑这些组合。在这项工作中,我们开发了一种可拖动的选择算法,以通过利用特征交互检测中的技术来有效地识别必要的特征组合。我们提出的稀疏互动添加剂网络(Sian)构建了从这些简单且可解释的模型到完全连接的神经网络的桥梁。Sian在多个大规模表格数据集中对最先进的方法实现了竞争性能,并始终发现神经网络的建模能力与更简单方法的普遍性之间的最佳权衡。
translated by 谷歌翻译
We introduce the XPER (eXplainable PERformance) methodology to measure the specific contribution of the input features to the predictive or economic performance of a model. Our methodology offers several advantages. First, it is both model-agnostic and performance metric-agnostic. Second, XPER is theoretically founded as it is based on Shapley values. Third, the interpretation of the benchmark, which is inherent in any Shapley value decomposition, is meaningful in our context. Fourth, XPER is not plagued by model specification error, as it does not require re-estimating the model. Fifth, it can be implemented either at the model level or at the individual level. In an application based on auto loans, we find that performance can be explained by a surprisingly small number of features. XPER decompositions are rather stable across metrics, yet some feature contributions switch sign across metrics. Our analysis also shows that explaining model forecasts and model performance are two distinct tasks.
translated by 谷歌翻译
Preddiff是一种模型不合时宜的局部归因方法,牢固地植根于概率理论。它的简单直觉是在边缘化特征时测量预测变化。在这项工作中,我们阐明了Preddiff的属性及其与Shapley值的密切联系。我们强调分类和回归之间的重要差异,这在两种形式主义中都需要特定的治疗方法。我们通过引入一种新的,有充分的基础的措施来扩展Preddiff,以实现任意特征子集之间的相互作用效果。对互动效应的研究代表了对黑盒模型的全面理解的不可避免的一步,对于科学应用尤其重要。Preddiff配备了我们的新型交互度量,是一种有前途的模型无关方法,用于获得可靠的,数值廉价和理论上声音的归因。
translated by 谷歌翻译
本文提出了分层和符号和或图形(AOG),客观地解释由训练有素的深层模型进行推理的内部逻辑。我们首先定义博弈论中解释器模型的客观性,我们开发了深层模型编码的逻辑和逻辑的严格表示。AOG解释者的客观性和可信度在理论上和实验验证。此外,我们提出了几种技术来提升解释的简明。
translated by 谷歌翻译
由于黑盒预测方法如随机森林和神经网络的广泛使用,重新开发了用于量化变量重要性的发展方法,作为可解释预测的更广泛目标的一部分。一种流行的方法是定义变量重要性参数 - 被称为Loco(遗漏协变量) - 基于来自回归模型的滴加器。这基本上是一个非参考版本的R角。该参数非常一般,可以非正常估计,但它可能很难解释,因为它受到协变量之间的相关性的影响。我们提出了一种通过定义MOCO的修改版本来缓解相关性的方法。这个新参数难以非视野识地估计,但我们展示了如何使用半造型模型来估算它。
translated by 谷歌翻译