Preddiff是一种模型不合时宜的局部归因方法,牢固地植根于概率理论。它的简单直觉是在边缘化特征时测量预测变化。在这项工作中,我们阐明了Preddiff的属性及其与Shapley值的密切联系。我们强调分类和回归之间的重要差异,这在两种形式主义中都需要特定的治疗方法。我们通过引入一种新的,有充分的基础的措施来扩展Preddiff,以实现任意特征子集之间的相互作用效果。对互动效应的研究代表了对黑盒模型的全面理解的不可避免的一步,对于科学应用尤其重要。Preddiff配备了我们的新型交互度量,是一种有前途的模型无关方法,用于获得可靠的,数值廉价和理论上声音的归因。
translated by 谷歌翻译
基于Shapley值的功能归因在解释机器学习模型中很受欢迎。但是,从理论和计算的角度来看,它们的估计是复杂的。我们将这种复杂性分解为两个因素:(1)〜删除特征信息的方法,以及(2)〜可拖动估计策略。这两个因素提供了一种天然镜头,我们可以更好地理解和比较24种不同的算法。基于各种特征删除方法,我们描述了多种类型的Shapley值特征属性和计算每个类型的方法。然后,基于可进行的估计策略,我们表征了两个不同的方法家族:模型 - 不合时宜的和模型特定的近似值。对于模型 - 不合稳定的近似值,我们基准了广泛的估计方法,并将其与Shapley值的替代性但等效的特征联系起来。对于特定于模型的近似值,我们阐明了对每种方法的线性,树和深模型的障碍至关重要的假设。最后,我们确定了文献中的差距以及有希望的未来研究方向。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
除了机器学习(ML)模型的令人印象深刻的预测力外,最近还出现了解释方法,使得能够解释诸如深神经网络的复杂非线性学习模型。获得更好的理解尤其重要。对于安全 - 关键的ML应用或医学诊断等。虽然这种可解释的AI(XAI)技术对分类器达到了重大普及,但到目前为止对XAI的重点进行了很少的关注(Xair)。在这篇综述中,我们澄清了XAI对回归和分类任务的基本概念差异,为Xair建立了新的理论见解和分析,为Xair提供了真正的实际回归问题的示范,最后讨论了该领域仍然存在的挑战。
translated by 谷歌翻译
Explainable AI transforms opaque decision strategies of ML models into explanations that are interpretable by the user, for example, identifying the contribution of each input feature to the prediction at hand. Such explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by finding relevant subspaces in activation space that can be mapped to more abstract human-understandable concepts and enable a joint attribution on concepts and input features. To automatically extract the desired representation, we propose new subspace analysis formulations that extend the principle of PCA and subspace analysis to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), optimize relevance of projected activations rather than the more traditional variance or kurtosis. This enables a much stronger focus on subspaces that are truly relevant for the prediction and the explanation, in particular, ignoring activations or concepts to which the prediction model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.
translated by 谷歌翻译
Selecting a minimal feature set that is maximally informative about a target variable is a central task in machine learning and statistics. Information theory provides a powerful framework for formulating feature selection algorithms -- yet, a rigorous, information-theoretic definition of feature relevancy, which accounts for feature interactions such as redundant and synergistic contributions, is still missing. We argue that this lack is inherent to classical information theory which does not provide measures to decompose the information a set of variables provides about a target into unique, redundant, and synergistic contributions. Such a decomposition has been introduced only recently by the partial information decomposition (PID) framework. Using PID, we clarify why feature selection is a conceptually difficult problem when approached using information theory and provide a novel definition of feature relevancy and redundancy in PID terms. From this definition, we show that the conditional mutual information (CMI) maximizes relevancy while minimizing redundancy and propose an iterative, CMI-based algorithm for practical feature selection. We demonstrate the power of our CMI-based algorithm in comparison to the unconditional mutual information on benchmark examples and provide corresponding PID estimates to highlight how PID allows to quantify information contribution of features and their interactions in feature-selection problems.
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
We introduce the XPER (eXplainable PERformance) methodology to measure the specific contribution of the input features to the predictive or economic performance of a model. Our methodology offers several advantages. First, it is both model-agnostic and performance metric-agnostic. Second, XPER is theoretically founded as it is based on Shapley values. Third, the interpretation of the benchmark, which is inherent in any Shapley value decomposition, is meaningful in our context. Fourth, XPER is not plagued by model specification error, as it does not require re-estimating the model. Fifth, it can be implemented either at the model level or at the individual level. In an application based on auto loans, we find that performance can be explained by a surprisingly small number of features. XPER decompositions are rather stable across metrics, yet some feature contributions switch sign across metrics. Our analysis also shows that explaining model forecasts and model performance are two distinct tasks.
translated by 谷歌翻译
测量黑匣子预测算法中变量重要性的最流行方法是利用合成输入,这些输入结合了来自多个受试者的预测变量。这些输入可能是不可能的,身体上不可能的,甚至在逻辑上是不可能的。结果,对这种情况的预测可以基于数据,这与对黑匣子的训练非常不同。我们认为,当解释使用此类值时,用户不能相信预测算法的决定的解释。取而代之的是,我们主张一种称为同类沙普利的方法,该方法基于经济游戏理论,与大多数其他游戏理论方法不同,它仅使用实际观察到的数据来量化可变重要性。莎普利队的同伙通过缩小判断的主题的缩小,被认为与一个或多个功能上的目标主题相似。如果使用它来缩小队列对队列平均值有很大的不同,则功能很重要。我们在算法公平问题上进行了说明,其中必须将重要性归因于未经训练模型的保护变量。对于每个主题和每个预测变量,我们可以计算该预测因子对受试者的预测响应或对其实际响应的重要性。这些值可以汇总,例如在所有黑色受试者上,我们提出了一个贝叶斯引导程序来量化个人和骨料莎普利值的不确定性。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
即使有效,模型的使用也必须伴随着转换数据的各个级别的理解(上游和下游)。因此,需求增加以定义单个数据与算法可以根据其分析可以做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。
translated by 谷歌翻译
在可解释的机器学习中,当地的事后解释算法和固有的可解释模型通常被视为竞争方法。在这项工作中,提供了有关Shapley Values的新颖观点,即Shapley Values,这是一种突出的事后解释技术,并表明它与玻璃盒 - 玻璃盒 - gams密切相关,Glassbox-Gam是一种流行的可解释模型。我们介绍了$ n $ -Shapley值,这是Shapley值的自然扩展,该值解释了具有交互条款的个人预测,直到$ n $。随着$ n $的增加,$ n $ shapley的值会收敛于Shapley-Gam,这是原始功能的独特确定分解。从Shapley-GAM中,我们可以计算出任意秩序的Shapley值,从而确切的见解对这些解释的局限性。然后,我们证明Shapley值恢复了订单$ n $的通用添加剂模型,假设我们允许交互条款在解释中订购$ n $。这意味着原始的Shapley值恢复了玻璃盒煤气。在技​​术端,我们表明,选择值函数的不同方式与原始函数的不同功能分解之间存在一对一的对应关系。这为如何选择值函数的问题提供了一个新的观点。我们还对各种标准分类器中存在的可变相互作用程度进行了经验分析,并讨论了我们结果对算法解释的含义。一个用于计算$ n $ shapley值的Python软件包,并在本文中复制结果,请访问\ url {https://github.com/tml-tuebingen/nshap}。
translated by 谷歌翻译
随机森林已被广泛用于其提供的所谓重要措施,在输入变量的相关性来预测某一输出全局(每个数据集)级洞察能力。在另一方面,根据沙普利值方法已被引入特征相关的基于树的模型分析细化到本地(每个实例)的水平。在这种情况下,我们首先证明杂质(MDI)变量重要性得分的全球平均减少对应的Shapley值在某些条件下。然后,我们推导出变量相关的本地MDI重要的措施,这与全球MDI衡量一个非常自然的连接,并且可以与局部特征相关的一个新概念。我们进一步联系当地MDI重要性有关与沙普利值和从文献中有关措施的光进行讨论。这些措施是通过实验在几个分类和回归问题的说明。
translated by 谷歌翻译
随着现代复杂的神经网络不断破坏记录并解决更严重的问题,它们的预测也变得越来越少。目前缺乏解释性通常会破坏敏感设置中精确的机器学习工具的部署。在这项工作中,我们提出了一种基于Shapley系数的层次扩展的图像分类的模型 - 不足的解释方法 - 层次结构(H-SHAP)(H-SHAP) - 解决了当前方法的某些局限性。与其他基于沙普利的解释方法不同,H-shap是可扩展的,并且可以计算而无需近似。在某些分布假设下,例如在多个实例学习中常见的假设,H-shap检索了确切的Shapley系数,并具有指数改善的计算复杂性。我们将我们的分层方法与基于Shapley的流行基于Shapley和基于Shapley的方法进行比较,而基于Shapley的方法,医学成像方案以及一般的计算机视觉问题,表明H-Shap在准确性和运行时都超过了最先进的状态。代码和实验已公开可用。
translated by 谷歌翻译
无监督的机器学习的目的是删除复杂的高维数据的表示形式,从而解释数据中的重要潜在因素以及操纵它们以生成具有理想功能的新数据。这些方法通常依赖于对抗方案,在该方案中,对代表进行调整以避免歧视者能够重建特定的数据信息(标签)。我们提出了一种简单,有效的方法,即在无需培训对抗歧视器的情况下解开表示形式,并将我们的方法应用于受限的玻尔兹曼机器(RBM),这是最简单的基于代表的生成模型之一。我们的方法依赖于在训练过程中引入对权重的足够约束,这使我们能够将有关标签的信息集中在一小部分潜在变量上。该方法的有效性在MNIST数据集,二维ISING模型和蛋白质家族的分类法上说明了。此外,我们还展示了我们的框架如何从数据的对数模型中计算成本,与其表示形式的删除相关。
translated by 谷歌翻译
卷积神经网络(CNN)最近由于捕获非线性系统行为并提取预测性时空模式而引起了地球科学的极大关注。然而,鉴于其黑盒的性质以及预测性的重要性,可解释的人工智能方法(XAI)已成为解释CNN决策策略的一种手段。在这里,我们建立了一些最受欢迎的XAI方法的比较,并研究了它们在解释CNN的地球科学应用决策方面的保真度。我们的目标是提高对这些方法的理论局限性的认识,并深入了解相对优势和缺点,以帮助指导最佳实践。所考虑的XAI方法首先应用于理想化的归因基准,在该基准中,该网络解释的基础真实是先验,以帮助客观地评估其性能。其次,我们将XAI应用于与气候相关的预测设置,即解释CNN,该CNN经过训练,可以预测气候模拟每日快照中的大气河流数量。我们的结果突出了XAI方法的几个重要问题(例如,梯度破碎,无法区分归因的迹象,对零输入的无知),这些迹象以前在我们的领域被忽略了,如果不谨慎地考虑,可能会导致扭曲的图片CNN决策策略。我们设想,我们的分析将激发对XAI保真度的进一步调查,并将有助于在地球科学中谨慎地实施XAI,这可能导致进一步剥削CNN和深入学习预测问题。
translated by 谷歌翻译
目前,在统计严格的方法(如线性回归或添加剂花纹)与使用神经网络的强大深度方法之间的性能差距很大。以前试图缩小此差距的工作未能完全研究成倍增长的功能组合数量,这些功能组合在训练过程中会自动考虑这些组合。在这项工作中,我们开发了一种可拖动的选择算法,以通过利用特征交互检测中的技术来有效地识别必要的特征组合。我们提出的稀疏互动添加剂网络(Sian)构建了从这些简单且可解释的模型到完全连接的神经网络的桥梁。Sian在多个大规模表格数据集中对最先进的方法实现了竞争性能,并始终发现神经网络的建模能力与更简单方法的普遍性之间的最佳权衡。
translated by 谷歌翻译
Originating from cooperative game theory, Shapley values have become one of the most widely used measures for variable importance in applied Machine Learning. However, the statistical understanding of Shapley values is still limited. In this paper, we take a nonparametric (or smoothing) perspective by introducing Shapley curves as a local measure of variable importance. We propose two estimation strategies and derive the consistency and asymptotic normality both under independence and dependence among the features. This allows us to construct confidence intervals and conduct inference on the estimated Shapley curves. The asymptotic results are validated in extensive experiments. In an empirical application, we analyze which attributes drive the prices of vehicles.
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译