计算和实验能力的改进正在迅速增加常规产生的科学数据量。在受内存和计算强度约束的应用中,过大的数据集可能阻碍科学发现,使数据降低数据驱动方法的关键组件。数据集在两个方向上增长:数据点数及其维度。虽然数据压缩技术涉及减少维度,但这里的重点是减少数据点的数量。建议策略选择数据点,使得它们统一地跨越数据的相位空间。所提出的算法依赖于估计数据的概率图并使用它来构造接受概率。使用迭代方法来准确地估计当仅使用小型数据集的小子集来构造概率图时稀有数据点的概率。代替将相位空间融合以估计概率图,其功能形式近似于标准化流程。因此,该方法自然地延伸到高维数据集。所提出的框架被证明是一种可行的途径,以便在可以使用丰富的数据时实现数据有效的机器学习。该方法的实现是在伴随存储库中(https://github.com/nrer/phase-space-sampling)。
translated by 谷歌翻译
许多工程问题需要预测实现实现变异性或建模量的精致描述。在这种情况下,有必要采用未知高维空间的元素,其中可能具有数百万自由度。虽然存在能够具有具有已知形状的概率密度函数(PDF)的方法的方法,但是当分布未知时需要进行若干近似。在本文中,基础分布的采样方法以及底层分布的推动都是用一种称为生成对抗网络(GaN)的数据驱动方法,该方法列举了两个竞争的神经网络来生产可以有效地产生样本的网络从训练集分发。在实践中,通常需要从条件分布中绘制样品。当条件变量是连续的时,可以仅可用对应于调节变量的特定值的一个(如果有)数据点,这不足以估计条件分布。使用PDF的条件时刻的先验估计,处理此问题。这里比较两种方法,随机估计和外部神经网络,用于计算这些时刻;但是,可以使用任何优选的方法。在过滤的湍流流场的解构的情况下,证明了算法。结果表明,与最先进的方法相比,所提出的算法的所有版本有效地对目标条件分布进行了最小的影响,对样品的质量的影响最小。另外,该过程可以用作由连续变量的条件GaN(CGAN)产生的样本的分集的度量。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
本文为工程产品的计算模型或仅返回分类信息的过程提供了一种新的高效和健壮方法,用于罕见事件概率估计,例如成功或失败。对于此类模型,大多数用于估计故障概率的方法,这些方法使用结果的数值来计算梯度或估计与故障表面的接近度。即使性能函数不仅提供了二进制输出,系统的状态也可能是连续输入变量域中定义的不平滑函数,甚至是不连续的函数。在这些情况下,基于经典的梯度方法通常会失败。我们提出了一种简单而有效的算法,该算法可以从随机变量的输入域进行顺序自适应选择点,以扩展和完善简单的基于距离的替代模型。可以在连续采样的任何阶段完成两个不同的任务:(i)估计失败概率,以及(ii)如果需要进一步改进,则选择最佳的候选者进行后续模型评估。选择用于模型评估的下一个点的建议标准最大化了使用候选者分类的预期概率。因此,全球探索与本地剥削之间的完美平衡是自动维持的。该方法可以估计多种故障类型的概率。此外,当可以使用模型评估的数值来构建平滑的替代物时,该算法可以容纳此信息以提高估计概率的准确性。最后,我们定义了一种新的简单但一般的几何测量,这些测量是对稀有事实概率对单个变量的全局敏感性的定义,该度量是作为所提出算法的副产品获得的。
translated by 谷歌翻译
社会和自然中的极端事件,例如大流行尖峰,流氓波浪或结构性失败,可能会带来灾难性的后果。极端的表征很困难,因为它们很少出现,这似乎是由良性的条件引起的,并且属于复杂且通常是未知的无限维系统。这种挑战使他们将其描述为“毫无意义”。我们通过将贝叶斯实验设计(BED)中的新型训练方案与深神经操作员(DNOS)合奏结合在一起来解决这些困难。这个模型不足的框架配对了一个床方案,该床方案积极选择数据以用近似于无限二二维非线性运算符的DNO集合来量化极端事件。我们发现,这个框架不仅清楚地击败了高斯流程(GPS),而且只有两个成员的浅色合奏表现最好; 2)无论初始数据的状态如何(即有或没有极端),都会发现极端; 3)我们的方法消除了“双研究”现象; 4)与逐步全球Optima相比,使用次优的采集点的使用不会阻碍床的性能; 5)蒙特卡洛的获取优于高量级的标准优化器。这些结论共同构成了AI辅助实验基础设施的基础,该基础设施可以有效地推断并查明从物理到社会系统的许多领域的关键情况。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
基于采样的推理技术是现代宇宙学数据分析的核心;然而,这些方法与维度不良,通常需要近似或顽固的可能性。在本文中,我们描述了截短的边际神经比率估计(TMNRE)(即所谓的基于模拟的推断的新方法)自然避免了这些问题,提高了$(i)$效率,$(ii)$可扩展性和$ (iii)推断后的后续后续的可信度。使用宇宙微波背景(CMB)的测量,我们表明TMNRE可以使用比传统马尔可夫链蒙特卡罗(MCMC)方法更少模拟器呼叫的数量级来实现融合的后海后。值得注意的是,所需数量的样本有效地独立于滋扰参数的数量。此外,称为\ MEMPH {本地摊销}的属性允许对基于采样的方法无法访问的严格统计一致性检查的性能。 TMNRE承诺成为宇宙学数据分析的强大工具,特别是在扩展宇宙学的背景下,其中传统的基于采样的推理方法所需的时间级数融合可以大大超过$ \ Lambda $ CDM等简单宇宙学模型的时间。为了执行这些计算,我们使用开源代码\ texttt {swyft}来使用TMNRE的实现。
translated by 谷歌翻译
我们提出了一种非常重要的抽样方法,该方法适用于估计高维问题中的罕见事件概率。我们将一般重要性抽样问题中的最佳重要性分布近似为在订单保留转换组成下的参考分布的推动力,在这种转换的组成下,每种转换都是由平方的张量训练 - 培训分解形成的。平方张量训练的分解提供了可扩展的ANSATZ,用于通过密度近似值来构建具有订单的高维转换。沿着一系列桥接密度移动的地图组成的使用减轻了直接近似浓缩密度函数的难度。为了计算对非规范概率分布的期望,我们设计了一个比率估计器,该比率估计器使用单独的重要性分布估算归一化常数,这再次通过张量训练格式的转换组成构建。与自称的重要性抽样相比,这提供了更好的理论差异,因此为贝叶斯推理问题中罕见事件概率的有效计算打开了大门。关于受微分方程约束的问题的数值实验显示,计算复杂性几乎没有增加,事件概率将零,并允许对迄今为止对复杂,高维后密度的罕见事件概率的迄今无法获得的估计。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
罕见事件计算研究中的一个中心对象是委员会函数。尽管计算成本高昂,但委员会功能编码涉及罕见事件的过程的完整机械信息,包括反应率和过渡状态合奏。在过渡路径理论(TPT)的框架下,最近的工作[1]提出了一种算法,其中反馈回路融合了一个神经网络,该神经网络将委员会功能建模为重要性采样,主要是伞形采样,该摘要收集了自适应训练所需的数据。在这项工作中,我们显示需要进行其他修改以提高算法的准确性。第一个修改增加了监督学习的要素,这使神经网络通过拟合从短分子动力学轨迹获得的委员会值的样本均值估计来改善其预测。第二个修改用有限的温度字符串(FTS)方法代替了基于委员会的伞采样,该方法可以在过渡途径的区域中进行均匀抽样。我们测试了具有非凸电势能的低维系统的修改,可以通过分析或有限元方法找到参考解决方案,并显示如何将监督学习和FTS方法组合在一起,从而准确地计算了委员会功能和反应速率。我们还为使用FTS方法的算法提供了错误分析,使用少数样品在训练过程中可以准确估算反应速率。然后将这些方法应用于未知参考溶液的分子系统,其中仍然可以获得委员会功能和反应速率的准确计算。
translated by 谷歌翻译
标准化流是可易处理的密度模型,可以近似复杂的目标分布,例如物理系统的玻尔兹曼分布。但是,当前的训练流量要么具有寻求模式的行为,要么使用昂贵的MCMC模拟事先生成的目标样本,要么使用具有很高差异的随机损失。为了避免这些问题,我们以退火重要性采样(AIS)增强流量,并最大程度地减少覆盖$ \ alpha $ -divergence的质量,并使用$ \ alpha = 2 $,从而最大程度地减少了重要性的重量差异。我们的方法是流动性Bootstrap(Fab),使用AIS在流动较差的目标区域中生成样品,从而促进了新模式的发现。我们以AIS的最小差异分布来定位,以通过重要性抽样来估计$ \ alpha $ -Divergence。我们还使用优先的缓冲区来存储和重复使用AIS样本。这两个功能显着提高了Fab的性能。我们将FAB应用于复杂的多模式目标,并表明我们可以在以前的方法失败的情况下非常准确地近似它们。据我们所知,我们是第一个仅使用非均衡目标密度学习丙氨酸二肽分子的玻璃体分布,而无需通过分子动力学(MD)模拟生成的样品:FAB与通过最大可能性训练更好的效果,而不是通过最大可能性产生的结果。在MD样品上使用100倍的目标评估。在重新获得重要权重的样品后,我们获得了与地面真相几乎相同的二面角的无偏直方图。
translated by 谷歌翻译
映射近场污染物的浓度对于跟踪城市地区意外有毒羽状分散体至关重要。通过求解大部分湍流谱,大型模拟(LES)具有准确表示污染物浓度空间变异性的潜力。找到一种合成大量信息的方法,以提高低保真操作模型的准确性(例如,提供更好的湍流封闭条款)特别有吸引力。这是一个挑战,在多质量环境中,LES的部署成本高昂,以了解羽流和示踪剂分散如何随着各种大气和源参数的变化。为了克服这个问题,我们提出了一个合并正交分解(POD)和高斯过程回归(GPR)的非侵入性降低阶模型,以预测与示踪剂浓度相关的LES现场统计。通过最大的后验(MAP)过程,GPR HyperParameter是通过POD告知的最大后验(MAP)过程来优化组件的。我们在二维案例研究上提供了详细的分析,该案例研究对应于表面安装的障碍物上的湍流大气边界层流。我们表明,障碍物上游的近源浓度异质性需要大量的POD模式才能得到充分捕获。我们还表明,逐组分的优化允许捕获POD模式中的空间尺度范围,尤其是高阶模式中较短的浓度模式。如果学习数据库由至少五十至100个LES快照制成,则可以首先估算所需的预算,以朝着更逼真的大气分散应用程序迈进,因此减少订单模型的预测仍然可以接受。
translated by 谷歌翻译
在机器学习中调用多种假设需要了解歧管的几何形状和维度,理论决定了需要多少样本。但是,在应用程序数据中,采样可能不均匀,歧管属性是未知的,并且(可能)非纯化;这意味着社区必须适应本地结构。我们介绍了一种用于推断相似性内核提供数据的自适应邻域的算法。从本地保守的邻域(Gabriel)图开始,我们根据加权对应物进行迭代率稀疏。在每个步骤中,线性程序在全球范围内产生最小的社区,并且体积统计数据揭示了邻居离群值可能违反了歧管几何形状。我们将自适应邻域应用于非线性维度降低,地球计算和维度估计。与标准算法的比较,例如使用K-Nearest邻居,证明了它们的实用性。
translated by 谷歌翻译
我们确定有效的随机微分方程(SDE),用于基于精细的粒子或基于试剂的模拟的粗糙观察结果;然后,这些SDE提供了精细规模动力学的有用的粗替代模型。我们通过神经网络近似这些有效的SDE中的漂移和扩散率函数,可以将其视为有效的随机分解。损失函数的灵感来自于已建立的随机数值集成剂的结构(在这里,欧拉 - 玛鲁山和米尔斯坦);因此,我们的近似值可以受益于这些基本数值方案的向后误差分析。当近似粗的模型(例如平均场方程)可用时,它们还自然而然地适合“物理信息”的灰色盒识别。 Langevin型方程和随机部分微分方程(SPDE)的现有数值集成方案也可以用于训练;我们在随机强迫振荡器和随机波方程式上证明了这一点。我们的方法不需要长时间的轨迹,可以在散落的快照数据上工作,并且旨在自然处理每个快照的不同时间步骤。我们考虑了预先知道粗糙的集体观察物以及必须以数据驱动方式找到它们的情况。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
相关特征的识别,即确定系统的过程或属性的驱动变量,是对具有大量变量的数据集分析的重要组成部分。量化这些特征相关性的数学严格方法是相互信息。相互信息确定特征在其联合相互依赖与感兴趣的财产方面的相关性。但是,相互信息需要作为输入概率分布,这不能可靠地从连续分布(例如长度或能量)等连续分布中估计。在这里,我们介绍了总累积共同信息(TCMI),这是对相互依赖关系的相关性的度量,该信息将相互信息扩展到基于累积概率分布的连续分布的随机变量。 TCMI是一种非参数,鲁棒和确定性的度量,可促进具有不同基数的特征集之间的比较和排名。 TCMI诱导的排名允许特征选择,即,考虑到数据示例的数量以及一组变量集的基数,识别与感兴趣属性的非线性统计学相关的变量集的识别。我们通过模拟数据评估测量的性能,将其性能与类似的多元依赖性度量进行比较,并在一组标准数据集中证明了我们的功能选择方法的有效性以及材料科学中的典型情况。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
时间变化数量的估计是医疗保健和金融等领域决策的基本组成部分。但是,此类估计值的实际实用性受到它们量化预测不确定性的准确程度的限制。在这项工作中,我们解决了估计高维多元时间序列的联合预测分布的问题。我们提出了一种基于变压器体系结构的多功能方法,该方法使用基于注意力的解码器估算关节分布,该解码器可被学会模仿非参数Copulas的性质。最终的模型具有多种理想的属性:它可以扩展到数百个时间序列,支持预测和插值,可以处理不规则和不均匀的采样数据,并且可以在训练过程中无缝地适应丢失的数据。我们从经验上证明了这些属性,并表明我们的模型在多个现实世界数据集上产生了最新的预测。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译