本文提出了一个基于对MCDM问题的概率解释的贝叶斯框架,并涵盖了几种众所周知的多准则决策(MCDM)方法。由于贝叶斯模型的灵活性,该拟议的框架可以以统计优雅的方式解决MCDM中的几个长期存在的基本挑战,包括小组决策问题和标准相关性。同样,该模型可以在决策者(DMS)的偏好(例如正常和三角形分布以及间隔偏好)的偏好(DMS)中适应不同形式的不确定性。此外,开发了一个概率混合模型,该模型可以将DMS分为几个详尽的类别。概率排名方案也是针对标准和替代方案设计的,它标识了一个标准/替代方案比基于DM(S)偏好更重要的程度。该实验在几个数字示例上验证了所提出的框架的结果,并与其他方法相比突出了其显着特征。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.
translated by 谷歌翻译
贝叶斯网络是一种图形模型,用于编码感兴趣的变量之间的概率关系。当与统计技术结合使用时,图形模型对数据分析具有几个优点。一个,因为模型对所有变量中的依赖性进行编码,因此它易于处理缺少某些数据条目的情况。二,贝叶斯网络可以用于学习因果关系,因此可以用来获得关于问题域的理解并预测干预的后果。三,因为该模型具有因果和概率语义,因此是结合先前知识(通常出现因果形式)和数据的理想表示。四,贝叶斯网络与贝叶斯网络的统计方法提供了一种有效和原则的方法,可以避免数据过剩。在本文中,我们讨论了从先前知识构建贝叶斯网络的方法,总结了使用数据来改善这些模型的贝叶斯统计方法。关于后一项任务,我们描述了学习贝叶斯网络的参数和结构的方法,包括使用不完整数据学习的技术。此外,我们还联系了贝叶斯网络方法,以学习监督和无监督学习的技术。我们说明了使用真实案例研究的图形建模方法。
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
已经提出了概率语言学期来处理提供的语言评估中的概率分布。但是,由于它具有一些基本缺陷,决策者通常很难获得合理的语言评估对团体决策的信息。此外,权重信息在动态信息融合和决策过程中起着重要作用。但是,有很少的研究方法可以随时间确定动态属性权重。在本文中,我提出了双模糊概率间隔语言术语集(DFPilts)的概念。首先,模糊语义集成,DFPilts定义,其偏好关系,定义了一些基本算法和聚合运算符。然后,开发了一种具有网络的模糊语言马尔可夫矩阵。然后,开发了一种基于距离测量和信息熵的权重确定方法,从而减少DFPilpr的不一致并获得基于组共识的集体优先级向量。最后,开发了基于聚合的方法,以及来自财务风险的最佳投资情况用于说明DFPilts和决策方法在多标准决策中的应用。
translated by 谷歌翻译
零售商的主要障碍之一是了解他们可以从合同需求响应(DR)客户期望的消费弹性。零售商提供的DR产品的目前的趋势不是消费者特定的,这对消费者在这些计划中的积极参与的额外障碍带来了额外的障碍。消费者需求行为的弹性因个人而异。该实用程序将从知识中获益,更准确地了解其价格的变化将如何修改其客户的消费模式。这项工作提出了博士签约消费者消费弹性的功能模型。该模型的目的是确定负载调整,消费者可以为不同的价格水平提供给零售商或公用事业。拟议的模型使用贝叶斯概率方法来识别实际的负载调整,单个合同的客户可以提供它可以体验的不同价格水平。发达的框架为零售商或公用事业提供了一个工具,以获得关于个人消费者如何应对不同价格水平的关键信息。这种方法能够量化消费者对DR信号作出反应的可能性,并识别各个合同的博士客户提供的实际负载调整提供他们可以体验的不同价格水平。该信息可用于最大限度地提高零售商或实用程序可以向系统运营商提供的服务的控制和可靠性。
translated by 谷歌翻译
对不确定性的深入了解是在不确定性下做出有效决策的第一步。深度/机器学习(ML/DL)已被大大利用,以解决处理高维数据所涉及的复杂问题。但是,在ML/DL中,推理和量化不同类型的不确定性的探索少于其他人工智能(AI)领域。特别是,自1960年代以来,在KRR上已经研究了信仰/证据理论,以推理并衡量不确定性以提高决策效率。我们发现,只有少数研究利用了ML/DL中的信念/证据理论中的成熟不确定性研究来解决不同类型的不确定性下的复杂问题。在本调查论文中,我们讨论了一些流行的信念理论及其核心思想,这些理论涉及不确定性原因和类型,并量化它们,并讨论其在ML/DL中的适用性。此外,我们讨论了三种主要方法,这些方法在深度神经网络(DNN)中利用信仰理论,包括证据DNN,模糊DNN和粗糙的DNN,就其不确定性原因,类型和量化方法以及其在多元化问题中的适用性而言。域。根据我们的深入调查,我们讨论了见解,经验教训,对当前最新桥接信念理论和ML/DL的局限性,最后是未来的研究方向。
translated by 谷歌翻译
我们提出了一种新的非参数混合物模型,用于多变量回归问题,灵感来自概率K-Nearthimest邻居算法。使用有条件指定的模型,对样本外输入的预测基于与每个观察到的数据点的相似性,从而产生高斯混合物表示的预测分布。在混合物组件的参数以及距离度量标准的参数上,使用平均场变化贝叶斯算法进行后推断,并具有基于随机梯度的优化过程。在与数据大小相比,输入 - 输出关系很复杂,预测分布可能偏向或多模式的情况下,输入相对较高的尺寸,该方法尤其有利。对五个数据集进行的计算研究,其中两个是合成生成的,这说明了我们的高维输入的专家混合物方法的明显优势,在验证指标和视觉检查方面都优于竞争者模型。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
我们考虑有限混合物(MFM)和Dirichlet工艺混合物(DPM)模型的贝叶斯混合物。最近的渐近理论已经确定,DPM高估了大型样本的聚类数量,并且两类模型的估计量对于不指定的群集的数量不一致,但是对有限样本分析的含义尚不清楚。拟合这些模型后的最终报告的估计通常是使用MCMC摘要技术获得的单个代表性聚类,但是尚不清楚这样的摘要估计簇的数量。在这里,我们通过模拟和对基因表达数据的应用进行了研究,发现(i)DPM甚至在有限样本中高估了簇数的数量,但仅在有限的程度上可以使用适当的摘要来纠正,并且(ii)(ii) )错误指定会导致对DPM和MFM中集群数量的高估,但是结果通常仍然可以解释。我们提供了有关MCMC摘要的建议,并建议尽管MFM的渐近性能更具吸引力,这提供了强大的动力来偏爱它们,但使用MFMS和DPMS获得的结果通常在实践中非常相似。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
translated by 谷歌翻译
在过去二十年中,识别具有不同纵向数据趋势的群体的方法已经成为跨越许多研究领域的兴趣。为了支持研究人员,我们总结了文献关于纵向聚类的指导。此外,我们提供了一种纵向聚类方法,包括基于基团的轨迹建模(GBTM),生长混合模拟(GMM)和纵向K平均值(KML)。该方法在基本级别引入,并列出了强度,限制和模型扩展。在最近数据收集的发展之后,将注意这些方法的适用性赋予密集的纵向数据(ILD)。我们展示了使用R.中可用的包在合成数据集上的应用程序的应用。
translated by 谷歌翻译
尽管在机器学习的方法论核心中是一个问题,但如何比较分类器仍未达成一致的共识。每个比较框架都面临着(至少)三个基本挑战:质量标准的多样性,数据集的多样性以及选择数据集选择的随机性/任意性。在本文中,我们通过采用决策理论的最新发展,为生动的辩论增添了新的观点。我们最终的框架基于所谓的偏好系统,通过广义的随机优势概念对分类器进行排名,该概念强大地绕过了繁琐的,甚至通常是自相矛盾的,对聚合的依赖。此外,我们表明,可以通过解决易于手柄的线性程序和通过适应的两样本观察随机化测试进行统计测试来实现广泛的随机优势。这确实产生了一个有力的框架,可以同时相对于多个质量标准进行分类器的统计比较。我们在模拟研究和标准基准数据集中说明和研究我们的框架。
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
最近,经验可能性已在贝叶斯框架下广泛应用。马尔可夫链蒙特卡洛(MCMC)方法经常用于从感兴趣参数的后验分布中采样。然而,可能性支持的复杂性,尤其是非凸性的性质,在选择适当的MCMC算法时建立了巨大的障碍。这种困难限制了在许多应用中基于贝叶斯的经验可能性(贝叶赛)方法的使用。在本文中,我们提出了一个两步的大都会黑斯廷斯算法,以从贝耶斯后期进行采样。我们的建议是在层次上指定的,其中确定经验可能性的估计方程用于根据其余参数的建议值提出一组参数的值。此外,我们使用经验可能性讨论贝叶斯模型的选择,并将我们的两步大都会黑斯廷斯算法扩展到可逆的跳跃马尔可夫链蒙特卡洛手术程序,以便从最终的后验中采样。最后,提出了我们提出的方法的几种应用。
translated by 谷歌翻译
排名和分数是判断使用的两个常见数据类型,以表达对象集合中对质量的偏好和/或质量的看法。存在许多模型以单独研究每种类型的数据,但没有统一的统计模型同时捕获两个数据类型,而不首先执行数据转换。我们提出了Mallows-Binomial模型来缩短这种差距,它通过量化的参数来与二项式分数模型相结合,这些差距通过量化的参数来量化对象质量,共识等级和法官之间的共识水平。我们提出了一种有效的树搜索算法来计算模型参数的精确MLE,分析和通过模拟研究模型的统计特性,并通过模拟将我们的模型应用于来自授予面板审查的实例,从而将其分数和部分排名的拨款。 。此外,我们展示了如何使用模型输出来排序对象的信心。拟议的模型被证明是从分数和排名中明智地结合信息,以量化对象质量并衡量具有适当统计不确定性的相互达成的共识。
translated by 谷歌翻译