尽管对检测分配(OOD)示例的重要性一致,但就OOD示例的正式定义几乎没有共识,以及如何最好地检测到它们。我们将这些示例分类为它们是否表现出背景换档或语义移位,并发现ood检测,模型校准和密度估计(文本语言建模)的两个主要方法,对这些类型的ood数据具有不同的行为。在14对分布和ood英语自然语言理解数据集中,我们发现密度估计方法一致地在背景移位设置中展开校准方法,同时在语义移位设置中执行更糟。此外,我们发现两种方法通常都无法检测到挑战数据中的示例,突出显示当前方法的弱点。由于没有单个方法在所有设置上都效果很好,因此在评估不同的检测方法时,我们的结果呼叫了OOD示例的明确定义。
translated by 谷歌翻译
In many task settings, text classification models are likely to encounter examples from novel classes on which they cannot predict correctly. Selective prediction, in which models abstain on low-confidence examples, provides a possible solution, but existing models are often overly confident on OOD examples. To remedy this overconfidence, we introduce Contrastive Novelty-Augmented Learning (CoNAL), a two-step method that generates OOD examples representative of novel classes, then trains to decrease confidence on them. First, we generate OOD examples by prompting a large language model twice: we prompt it to enumerate relevant novel labels, then generate examples from each novel class matching the task format. Second, we train our classifier with a novel contrastive objective that encourages lower confidence on generated OOD examples than training examples. When trained with CoNAL, classifiers improve in their ability to detect and abstain on OOD examples over prior methods by an average of 2.3% AUAC and 5.5% AUROC across 4 NLP datasets, with no cost to in-distribution accuracy.
translated by 谷歌翻译
在计算机视觉中探索的分销(OOD)检测良好的虽然,但在NLP分类的情况下已经开始较少尝试。在本文中,我们认为这些目前的尝试没有完全解决ood问题,并且可能遭受数据泄漏和所产生模型的校准差。我们呈现PNPOOD,通过使用最近提出的即插即用语言模型(Dathathri等,2020),通过域外样本生成进行数据增强技术来执行OOD检测。我们的方法产生靠近阶级边界的高质量辨别样本,从而在测试时间内进行准确的检测。我们展示了我们的模型优于预先样本检测的现有模型,并在20次新闻组文本和斯坦福情绪Teebank数据集上展示较低的校准错误(Lang,1995; Socheret al。,2013)。我们进一步突出显示了在EAC检测的先前尝试中使用的数据集进行了重要的数据泄露问题,并在新数据集中分享结果,以便无法遭受同样问题的检测。
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small-and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
translated by 谷歌翻译
As more and more conversational and translation systems are deployed in production, it is essential to implement and to develop effective control mechanisms guaranteeing their proper functioning and security. An essential component to ensure safe system behavior is out-of-distribution (OOD) detection, which aims at detecting whether an input sample is statistically far from the training distribution. Although OOD detection is a widely covered topic in classification tasks, it has received much less attention in text generation. This paper addresses the problem of OOD detection for machine translation and dialog generation from an operational perspective. Our contributions include: (i) RAINPROOF a Relative informAItioN Projection ODD detection framework; and (ii) a more operational evaluation setting for OOD detection. Surprisingly, we find that OOD detection is not necessarily aligned with task-specific measures. The OOD detector may filter out samples that are well processed by the model and keep samples that are not, leading to weaker performance. Our results show that RAINPROOF breaks this curse and achieve good results in OOD detection while increasing performance.
translated by 谷歌翻译
Deep neural networks have attained remarkable performance when applied to data that comes from the same distribution as that of the training set, but can significantly degrade otherwise. Therefore, detecting whether an example is out-of-distribution (OoD) is crucial to enable a system that can reject such samples or alert users. Recent works have made significant progress on OoD benchmarks consisting of small image datasets. However, many recent methods based on neural networks rely on training or tuning with both in-distribution and out-of-distribution data. The latter is generally hard to define a-priori, and its selection can easily bias the learning. We base our work on a popular method ODIN 1 [21], proposing two strategies for freeing it from the needs of tuning with OoD data, while improving its OoD detection performance. We specifically propose to decompose confidence scoring as well as a modified input pre-processing method. We show that both of these significantly help in detection performance. Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference in the difficulty of the problem, providing an analysis of when ODIN-like strategies do or do not work.
translated by 谷歌翻译
准确地检测出具有不同语义和协变量转移相对于分布的数据(ID)数据的分布外(OOD)数据对于部署安全可靠的模型至关重要。当处理高度结果应用(例如医学成像,自动驾驶汽车等)时,情况尤其如此。目的是设计一个可以接受ID数据有意义变化的检测器,同时还拒绝了OOD制度的示例。在实践中,可以通过使用适当的评分函数(例如能量)来实现一致性来实现此双重目标,并校准检测器以拒绝一组策划的OOD数据(称为离群曝光或不久的OE)。尽管OE方法被广泛采用,但由于现实世界情景的不可预测性,组装代表性的OOD数据集既昂贵又具有挑战性,因此最新设计了无OE探测器的趋势。在本文中,我们做出了一个令人惊讶的发现,即控制对ID变化的概括和暴露于不同(合成)异常值的示例对于同时改善语义和模态转移检测至关重要。与现有方法相反,我们的方法样本在潜在空间中嵌入式体系,并通过负数据扩展构建异常示例。通过一项关于医学成像基准(MedMnist,ISIC2019和NCT)的严格实证研究,我们在语义和模态转移下的现有无OE,OOD检测方法上表现出显着的性能增长(AUROC中的15美元\%-35 \%$)。
translated by 谷歌翻译
Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 19 popularly used PLMs. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.
translated by 谷歌翻译
由于其实际重要性,在提高神经网络安全部署方面的实际重要性,最近经济分配(OOD)检测最近受到了很大的关注。其中一个主要挑战是模型往往会对OOD数据产生高度自信的预测,这在ood检测中破坏了驾驶原理,即该模型应该仅对分布式样品充满信心。在这项工作中,我们提出了反应 - 一种简单有效的技术,用于减少对数据数据的模型过度限制。我们的方法是通过关于神经网络内部激活的新型分析,其为OOD分布显示出高度独特的签名模式。我们的方法可以有效地拓展到不同的网络架构和不同的OOD检测分数。我们经验证明,反应在全面的基准数据集套件上实现了竞争检测性能,并为我们的方法进行了理论解释。与以前的最佳方法相比,在ImageNet基准测试中,反应将假阳性率(FPR95)降低25.05%。
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译
检测到分布(OOD)数据是一项任务,它正在接受计算机视觉的深度学习领域越来越多的研究注意力。但是,通常在隔离任务上评估检测方法的性能,而不是考虑串联中的潜在下游任务。在这项工作中,我们检查了存在OOD数据(SCOD)的选择性分类。也就是说,检测OOD样本的动机是拒绝它们,以便降低它们对预测质量的影响。我们在此任务规范下表明,与仅在OOD检测时进行评估时,现有的事后方法的性能大不相同。这是因为如果ID数据被错误分类,将分布分配(ID)数据与OOD数据混合在一起的问题不再是一个问题。但是,正确和不正确的预测的ID数据中的汇合变得不受欢迎。我们还提出了一种新颖的SCOD,SoftMax信息保留(SIRC)的方法,该方法通过功能不足信息来增强基于软疗法的置信度得分,以便在不牺牲正确和错误的ID预测之间的分离的情况下,可以提高其识别OOD样品的能力。在各种成像网尺度数据集和卷积神经网络体系结构上进行的实验表明,SIRC能够始终如一地匹配或胜过SCOD的基线,而现有的OOD检测方法则无法做到。
translated by 谷歌翻译
我们经常在强大的机器学习中看到不良的权衡,其中分布(OOD)的精度与分布式(ID)的准确性不一致:通过删除伪造功能的专用技术获得的强大分类器通常具有更好的OOD,但ID较差,但ID较差。与通过ERM训练的标准分类器相比,准确性。在本文中,我们发现由ID校准的合奏(仅在ID数据上校准ID数据之后简单地整合标准和健壮的模型)优于ID和ID和OOD准确性。在11个自然分配移位数据集中,ID校准的合奏获得了两全其美的最佳:强大的ID准确性和OOD精度。我们在风格化的设置中分析了此方法,并确定了两个重要条件以使合奏执行良好的ID和OOD:(1)我们需要校准标准和可靠的模型(在ID数据上,因为OOD数据不可用),(2)OOD没有反相关的虚假特征。
translated by 谷歌翻译
本文我们的目标是利用异质的温度缩放作为校准策略(OOD)检测。此处的异质性是指每个样品的最佳温度参数可能不同,而不是传统的方法对整个分布使用相同的值。为了实现这一目标,我们提出了一种称为锚定的新培训策略,可以估算每个样品的适当温度值,从而导致几个基准的最新OOD检测性能。使用NTK理论,我们表明该温度函数估计与分类器的认知不确定性紧密相关,这解释了其行为。与某些表现最佳的OOD检测方法相反,我们的方法不需要暴露于其他离群数据集,自定义校准目标或模型结合。通过具有不同OOD检测设置的经验研究 - 远处,OOD附近和语义相干OOD - 我们建立了一种高效的OOD检测方法。可以在此处访问代码和模型-https://github.com/rushilanirudh/amp
translated by 谷歌翻译
超越在分销数据上的测试上,在分销(OOD)检测中最近的普及方式增加了。最近尝试分类OOD数据介绍了接近和远远检测的概念。具体而言,先前作品在检测难度方面定义了OOD数据的特征。我们建议使用两种类型的分布换档来表征ood数据的频谱:协变速和概念转移,其中协变速转移对应于样式的变化,例如噪声和概念移位表示语义的变化。该表征揭示了对每种类型的敏感性对OOD数据的检测和置信校准是重要的。因此,我们调查了捕获对改善它们的每种类型数据集偏移和方法的敏感性的得分功能。为此,我们从理论上得出了两个分数函数,用于ood检测,协变速分数和概念换档分数,基于对均分数的kl分解,并提出了一种几何启发方法(几何奥丁)来改善ood检测在两个班次下,只有分发数据。另外,所提出的方法自然地导致表现力的后HOC校准函数,其在分配和分发数据中产生最先进的校准性能。我们是第一个提出一种跨越检测和校准以及不同类型的班次工作的方法的方法。查看https://sites.google.com/view/geometric-decomposition的project页面。
translated by 谷歌翻译
我们介绍了几个新的数据集即想象的A / O和Imagenet-R以及合成环境和测试套件,我们称为CAOS。 Imagenet-A / O允许研究人员专注于想象成剩余的盲点。由于追踪稳健的表示,以特殊创建了ImageNet-R,因为表示不再简单地自然,而是包括艺术和其他演绎。 Caos Suite由Carla Simulator构建,允许包含异常物体,可以创建可重复的合成环境和用于测试稳健性的场景。所有数据集都是为测试鲁棒性和衡量鲁棒性的衡量进展而创建的。数据集已用于各种其他作品中,以衡量其具有鲁棒性的自身进步,并允许切向进展,这些进展不会完全关注自然准确性。鉴于这些数据集,我们创建了几种旨在推进鲁棒性研究的新方法。我们以最大Logit的形式和典型程度的形式构建简单的基线,并以深度的形式创建新的数据增强方法,从而提高上述基准。最大Logit考虑Logit值而不是SoftMax操作后的值,而微小的变化会产生明显的改进。典型程分将输出分布与类的后部分布进行比较。我们表明,除了分段任务之外,这将提高对基线的性能。猜测可能在像素级别,像素的语义信息比类级信息的语义信息不太有意义。最后,新的Deepaulment的新增强技术利用神经网络在彻底不同于先前使用的传统几何和相机的转换的图像上创建增强。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
在过去的几年中,深度学习(DL)一直在不断扩大其应用程序,并成为大型法规时代大规模源代码分析的推动力。由于意外的准确性降解,测试集与训练集不同的分布与训练集不同的分布与训练集不同。尽管最近在计算机视觉和自然语言过程等领域取得了分配转移基准测试的最新进展。对于源代码任务的分配转移分析和基准测试,进展有限,由于其数量和支持几乎所有工业部门的基础,都有很大的需求。为了填补这一空白,本文启动了提出代码,即用于源代码学习的分销基准数据集。具体而言,代码支持2种编程语言(即Java和Python)和5种代码分发偏移(即任务,程序员,时间戳记,代币和CST)。据我们所知,我们是第一个定义基于代码表示的分布变化的人。在实验中,我们首先评估现有分布探测器的有效性以及分配移位定义的合理性,然后测量流行代码学习模型(例如Codebert)对分类任务的模型概括。结果表明,1)仅基于SoftMax得分的OOD检测器在代码上表现良好,2)分配转移会导致所有代码分类模型中的准确性降解,3)基于表示的分布转移对模型的影响比其他模型具有更高的影响,并且4)预训练的模型对分布变化更具抵抗力。我们公开提供代码,从而实现了有关代码学习模型质量评估的后续研究。
translated by 谷歌翻译
为DNNS提供超出分销(OOD)检测对于他们在开放世界中的安全可靠运行至关重要。尽管最近的进展,但目前的作品通常会考虑ood问题中的粗粒度,这不能近似许多实际粒度的任务,其中在分布(ID)数据和OOD数据之间可以预期高粒度(例如,识别野生鸟类分类系统的新型鸟类。在这项工作中,我们首先仔细构建四种大型细粒度测试环境,其中现有方法显示出困难。我们发现当前的方法,包括在DNN培训期间包含大型/多样化异常值的方法,在宽面积上具有较差的覆盖范围,其中良好的谷物样品定位。然后,我们提出了混合异常曝光(MixoE),其通过混合ID数据和培训异常值来实现覆盖的OOD区域,并通过线性衰减将预测置信度线性衰减为从ID到OOD的输入转换来规范模型行为。广泛的实验和分析证明了Mixoe改善细粒环境中的检测的有效性。
translated by 谷歌翻译
Discriminative neural networks offer little or no performance guarantees when deployed on data not generated by the same process as the training distribution. On such out-of-distribution (OOD) inputs, the prediction may not only be erroneous, but confidently so, limiting the safe deployment of classifiers in real-world applications. One such challenging application is bacteria identification based on genomic sequences, which holds the promise of early detection of diseases, but requires a model that can output low confidence predictions on OOD genomic sequences from new bacteria that were not present in the training data. We introduce a genomics dataset for OOD detection that allows other researchers to benchmark progress on this important problem. We investigate deep generative model based approaches for OOD detection and observe that the likelihood score is heavily affected by population level background statistics. We propose a likelihood ratio method for deep generative models which effectively corrects for these confounding background statistics. We benchmark the OOD detection performance of the proposed method against existing approaches on the genomics dataset and show that our method achieves state-of-the-art performance. We demonstrate the generality of the proposed method by showing that it significantly improves OOD detection when applied to deep generative models of images.
translated by 谷歌翻译