在许多情况下,例如全基因组关联研究,通常存在变量之间的依赖性,通常可以推断模型中的相互作用效应。但是,在复杂和高维数据中数百万变量之间的成对相互作用受到低统计功率和巨大的计算成本的影响。为了应对这些挑战,我们提出了一个具有错误发现率(FDR)控制的两阶段测试程序,该程序被称为不太保守的多次测试校正。从理论上讲,FDR控制会费在两个阶段的数据依赖性方面的难度以及第二阶段进行的假设检验的数量取决于第一阶段的筛选结果。通过使用CRAM \'ER类型中度偏差技术,我们表明我们的过程在普遍的线性模型(GLM)中渐近地控制FDR,其中允许模型被误认为。另外,严格确定了FDR控制程序的渐近力。我们通过全面的仿真研究证明,我们的两阶段程序在计算上比经典BH程序具有可比或改进的统计能力更有效。最后,我们将提出的方法应用于DBGAP的膀胱癌数据,科学目标是鉴定膀胱癌的遗传易感性基因座。
translated by 谷歌翻译
我们考虑使用共享结构估算两个功能无向图形模型之间的差异的问题。在许多应用中,数据自然被认为是随机函数的向量而不是标量的矢量。例如,脑电图(EEG)数据更适当地被视为时间函数。在这样的问题中,不仅可以每个样本测量的函数数量大,而且每个功能都是自身是无限尺寸对象,使估计模型参数具有挑战性。这进一步复杂于曲线通常仅在离散时间点观察到。我们首先定义一个功能差异图,捕获两个功能图形模型之间的差异,并在功能性差分图定义良好时正式表征。然后,我们提出了一种方法,软件,直接估计功能差异图,而不首先估计每个图形。这在各个图形是密集的情况下,这是特别有益的,但差分图是稀疏的。我们表明,融合始终估计功能差图,即使在全面观察和离散的功能路径的高维设置中也是如此。我们通过仿真研究说明了我们方法的有限样本性质。我们还提出了一种竞争方法,该方法是关节功能图形套索,它概括了关节图形套索到功能设置。最后,我们将我们的方法应用于EEG数据,以揭示一群含有酒精使用障碍和对照组的个体之间的功能性脑连接的差异。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
本文提出了在多阶段实验的背景下的异质治疗效应的置信区间结构,以$ N $样品和高维,$ D $,混淆。我们的重点是$ d \ gg n $的情况,但获得的结果也适用于低维病例。我们展示了正则化估计的偏差,在高维变焦空间中不可避免,具有简单的双重稳固分数。通过这种方式,不需要额外的偏差,并且我们获得root $ N $推理结果,同时允许治疗和协变量的多级相互依赖性。记忆财产也没有假设;治疗可能取决于所有先前的治疗作业以及以前的所有多阶段混淆。我们的结果依赖于潜在依赖的某些稀疏假设。我们发现具有动态处理的强大推理所需的新产品率条件。
translated by 谷歌翻译
在二进制分类中,不平衡是指一个类受到重量级的情况。这个问题是由于数据收集过程,或者是一个班级的人口中罕见。生物学,医学,工程和社会科学等应用中经常出现不平衡的分类。在本手稿中,我们首次学习不平衡课程大小对高尺寸线性判别分析(LDA)的影响。我们表明,由于一类中的数据稀缺,称为少数阶级,以及特征空间的高度,LDA忽略了少数阶级,产生了最大的错误分类率。然后,我们基于划分和征服技术提出了一种新的硬阈值规则的建设,这减少了错误分类率之间的巨大差异。我们表明所提出的方法是渐近最佳的。我们进一步研究了不平衡案例中的两个已知众所周知的LDA稀疏版本。我们使用模拟评估不同方法的有限样本性能,并通过分析两个真实数据集。结果表明,我们的方法胜过其竞争对手或基于所选特征的小区的较小子集具有可比性,同时计算更有效。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
由于其出色的经验表现,随机森林是过去十年中使用的机器学习方法之一。然而,由于其黑框的性质,在许多大数据应用中很难解释随机森林的结果。量化各个特征在随机森林中的实用性可以大大增强其解释性。现有的研究表明,一些普遍使用的特征对随机森林的重要性措施遭受了偏见问题。此外,对于大多数现有方法,缺乏全面的规模和功率分析。在本文中,我们通过假设检验解决了问题,并提出了一个自由化特征 - 弥散性相关测试(事实)的框架,以评估具有偏见性属性的随机森林模型中给定特征的重要性,我们零假设涉及该特征是否与所有其他特征有条件地独立于响应。关于高维随机森林一致性的一些最新发展,对随机森林推断的这种努力得到了赋予的能力。在存在功能依赖性的情况下,我们的事实测试的香草版可能会遇到偏见问题。我们利用偏置校正的不平衡和调节技术。我们通过增强功率的功能转换将合奏的想法进一步纳入事实统计范围。在相当普遍的具有依赖特征的高维非参数模型设置下,我们正式确定事实可以提供理论上合理的随机森林具有P值,并通过非催化分析享受吸引人的力量。新建议的方法的理论结果和有限样本优势通过几个模拟示例和与Covid-19的经济预测应用进行了说明。
translated by 谷歌翻译
Bradley-terry-luce(BTL)模型是一个基准模型,用于个人之间的成对比较。尽管最近在几种流行程序的一阶渐近学上进行了最新进展,但对BTL模型中不确定性定量的理解基本上仍然不完整,尤其是当基础比较图很少时。在本文中,我们通过重点关注两个估计量的估计器来填补这一空白:最大似然估计器(MLE)和频谱估计器。使用统一的证明策略,我们在基础比较图的最稀少的可能的制度(最多达到某些多同源因​​素)中,为两个估计量提供了尖锐而均匀的非反应膨胀。这些扩展使我们能够获得:(i)两个估计器的有限维中心限制定理; (ii)构建个人等级的置信区间; (iii)$ \ ell_2 $估计的最佳常数,这是由MLE实现的,但不是由光谱估计器实现的。我们的证明是基于二阶剩余矢量的自洽方程和新的两次分析分析。
translated by 谷歌翻译
多变量功能数据的协方差结构可以高度复杂,特别是如果多变量维度大,则使标准多变量数据的统计方法的扩展到功能数据设置具有挑战性。例如,通过将多变量方法应用于截断的基础扩展系数,最近已经扩展到高斯图形模型。然而,与多变量数据相比的关键难度是协方差操作员紧凑,因此不可逆转。本文中的方法论地解决了多元函数数据的协方差建模的一般问题,特别是特定功能性高斯图形模型。作为第一步,提出了多变量功能数据的协方差运算符的可分离性的新概念,称为部分可分离性,导致这种数据的新型Karhunen-Lo \“Eve型扩展。接下来,示出部分可分离结构是特别有用的,以提供可以用一系列有限维图形模型,每个相同的固定尺寸识别的明确定义的功能高斯图形模型。这通过应用联合图形套索来激发一个简单有效的估计过程。通过在电机任务期间的模拟和分析功能性脑连接的仿真和分析来评估图形模型估计方法的经验性能。通过在电机任务期间的仿真和分析来评估图形模型估计方法的百分比实证性能。
translated by 谷歌翻译
This paper provides estimation and inference methods for a conditional average treatment effects (CATE) characterized by a high-dimensional parameter in both homogeneous cross-sectional and unit-heterogeneous dynamic panel data settings. In our leading example, we model CATE by interacting the base treatment variable with explanatory variables. The first step of our procedure is orthogonalization, where we partial out the controls and unit effects from the outcome and the base treatment and take the cross-fitted residuals. This step uses a novel generic cross-fitting method we design for weakly dependent time series and panel data. This method "leaves out the neighbors" when fitting nuisance components, and we theoretically power it by using Strassen's coupling. As a result, we can rely on any modern machine learning method in the first step, provided it learns the residuals well enough. Second, we construct an orthogonal (or residual) learner of CATE -- the Lasso CATE -- that regresses the outcome residual on the vector of interactions of the residualized treatment with explanatory variables. If the complexity of CATE function is simpler than that of the first-stage regression, the orthogonal learner converges faster than the single-stage regression-based learner. Third, we perform simultaneous inference on parameters of the CATE function using debiasing. We also can use ordinary least squares in the last two steps when CATE is low-dimensional. In heterogeneous panel data settings, we model the unobserved unit heterogeneity as a weakly sparse deviation from Mundlak (1978)'s model of correlated unit effects as a linear function of time-invariant covariates and make use of L1-penalization to estimate these models. We demonstrate our methods by estimating price elasticities of groceries based on scanner data. We note that our results are new even for the cross-sectional (i.i.d) case.
translated by 谷歌翻译
In high dimensional variable selection problems, statisticians often seek to design multiple testing procedures controlling the false discovery rate (FDR) and simultaneously discovering more relevant variables. Model-X methods, such as Knockoffs and conditional randomization tests, achieve the first goal of finite-sample FDR control under the assumption of known covariates distribution. However, it is not clear whether these methods can concurrently achieve the second goal of maximizing the number of discoveries. In fact, designing procedures to discover more relevant variables with finite-sample FDR control is a largely open question, even in the arguably simplest linear models. In this paper, we derive near-optimal testing procedures in high dimensional Bayesian linear models with isotropic covariates. We propose a Model-X multiple testing procedure, PoEdCe, which provably controls the frequentist FDR from finite samples even under model misspecification, and conjecturally achieves near-optimal power when the data follow the Bayesian linear model with a known prior. PoEdCe has three important ingredients: Posterior Expectation, distilled Conditional randomization test (dCRT), and the Benjamini-Hochberg procedure with e-values (eBH). The optimality conjecture of PoEdCe is based on a heuristic calculation of its asymptotic true positive proportion (TPP) and false discovery proportion (FDP), which is supported by methods from statistical physics as well as extensive numerical simulations. Furthermore, when the prior is unknown, we show that an empirical Bayes variant of PoEdCe still has finite-sample FDR control and achieves near-optimal power.
translated by 谷歌翻译
Integrative analysis of data from multiple sources is critical to making generalizable discoveries. Associations that are consistently observed across multiple source populations are more likely to be generalized to target populations with possible distributional shifts. In this paper, we model the heterogeneous multi-source data with multiple high-dimensional regressions and make inferences for the maximin effect (Meinshausen, B{\"u}hlmann, AoS, 43(4), 1801--1830). The maximin effect provides a measure of stable associations across multi-source data. A significant maximin effect indicates that a variable has commonly shared effects across multiple source populations, and these shared effects may be generalized to a broader set of target populations. There are challenges associated with inferring maximin effects because its point estimator can have a non-standard limiting distribution. We devise a novel sampling method to construct valid confidence intervals for maximin effects. The proposed confidence interval attains a parametric length. This sampling procedure and the related theoretical analysis are of independent interest for solving other non-standard inference problems. Using genetic data on yeast growth in multiple environments, we demonstrate that the genetic variants with significant maximin effects have generalizable effects under new environments.
translated by 谷歌翻译
我们提出了对非参数仪器变量(NPIV)模型中的结构函数的多面体锥体(例如,单调性,凸起)和平等(例如,参数,半游戏)限制的新的自适应假设试验。我们的测试统计是基于受限制和不受限制的筛估计之间的二次距离的改进的休假样本模拟。我们提供筛选调整参数的计算简单,数据驱动的选择和调整的CHI平方临界值。我们的测试在未知的内能性和仪器的未知强度存在下适应替代功能的未知平滑度。它达到了$ ^ 2 $以$ ^ 2 $的试验率。也就是说,通过未知规则的NPIV模型的任何其他假设测试,不能改善其在复合空缺上均匀地均匀地均匀的I型错误及其类型的II误差。通过反转自适应测试,可以获得数据驱动的置信度量为$ ^ 2 $。模拟确认我们的自适应测试控制规模及其有限样本功率极大地超过了NPIV模型中的单调性和参数限制的现有非自适应测试。介绍了对差异化产品需求和Engel曲线进行形状限制的经验应用。
translated by 谷歌翻译
即使是最精确的经济数据集也具有嘈杂,丢失,离散化或私有化的变量。实证研究的标准工作流程涉及数据清理,然后是数据分析,通常忽略数据清洁的偏差和方差后果。我们制定了具有损坏数据的因果推理的半造型模型,以包括数据清洁和数据分析。我们提出了一种新的数据清洁,估计和推理的新的端到端程序,以及数据清洁调整的置信区间。通过有限的示例参数,我们证明了因果关系参数的估算器的一致性,高斯近似和半游戏效率。 Gaussian近似的速率为N ^ { - 1/2} $,如平均治疗效果,如平均治疗效果,并且优雅地为当地参数劣化,例如特定人口统计的异构治疗效果。我们的关键假设是真正的协变量是较低的等级。在我们的分析中,我们为矩阵完成,统计学习和半统计统计提供了非对症的理论贡献。我们验证了数据清洁调整的置信区间隔的覆盖范围校准,以类似于2020年美国人口普查中实施的差异隐私。
translated by 谷歌翻译
我们调查与高斯的混合的数据分享共同但未知,潜在虐待协方差矩阵的数据。我们首先考虑具有两个等级大小的组件的高斯混合,并根据最大似然估计导出最大切割整数程序。当样品的数量在维度下线性增长时,我们证明其解决方案实现了最佳的错误分类率,直到对数因子。但是,解决最大切割问题似乎是在计算上棘手的。为了克服这一点,我们开发了一种高效的频谱算法,该算法达到最佳速率,但需要一种二次样本量。虽然这种样本复杂性比最大切割问题更差,但我们猜测没有多项式方法可以更好地执行。此外,我们收集了支持统计计算差距存在的数值和理论证据。最后,我们将MAX-CUT程序概括为$ k $ -means程序,该程序处理多组分混合物的可能性不平等。它享有相似的最优性保证,用于满足运输成本不平等的分布式的混合物,包括高斯和强烈的对数的分布。
translated by 谷歌翻译
我们提出了一种分布式引导方法,用于同时推断高维大量数据,该数据被许多机器存储和处理。该方法基于通信有效的偏差套索产生$ \ ell_ \ infty $ norm置信区域,我们提出了一种有效的交叉验证方法来调整每种迭代的方法。从理论上讲,我们证明了对通信的数量$ \ tau _ {\ min} $的下限,它值得统计准确性和效率。此外,$ \ tau _ {\ min} $仅与工人数量和固有维度的对数增加,而几乎不变为标称维度。我们通过广泛的仿真研究测试我们的理论,以及基于美国航空公司的按时绩效数据集的半合成数据集上的可变筛选任务。复制数值结果的代码可在GitHub上获得:https://github.com/skchao74/distributed-bootstrap。
translated by 谷歌翻译
基于A/B测试的政策评估引起了人们对数字营销的极大兴趣,但是在乘车平台(例如Uber和Didi)中的这种评估主要是由于其时间和/或空间依赖性实验的复杂结构而被很好地研究。 。本文的目的是在乘车平台中的政策评估中进行,目的是在平台的政策和换回设计下的感兴趣结果之间建立因果关系。我们提出了一个基于时间变化系数决策过程(VCDP)模型的新型潜在结果框架,以捕获时间依赖性实验中的动态治疗效果。我们通过将其分解为直接效应总和(DE)和间接效应(IE)来进一步表征平均治疗效应。我们为DE和IE制定了估计和推理程序。此外,我们提出了一个时空VCDP来处理时空依赖性实验。对于这两个VCDP模型,我们都建立了估计和推理程序的统计特性(例如弱收敛和渐近力)。我们进行广泛的模拟,以研究拟议估计和推理程序的有限样本性能。我们研究了VCDP模型如何帮助改善DIDI中各种派遣和处置政策的政策评估。
translated by 谷歌翻译
我们讨论了具有未知IV有效性的线性仪器变量(IV)模型中识别的基本问题。我们重新审视了流行的多数和多元化规则,并表明通常没有识别条件是“且仅在总体上”。假设“最稀少的规则”,该规则等同于多数规则,但在计算算法中变得运作,我们研究并证明了基于两步选择的其他IV估计器的非convex惩罚方法的优势,就两步选择而言选择一致性和单独弱IV的适应性。此外,我们提出了一种与识别条件保持一致的替代较低的惩罚,并同时提供甲骨文稀疏结构。与先前的文献相比,针对静脉强度较弱的估计仪得出了理想的理论特性。使用模拟证明了有限样本特性,并且选择和估计方法应用于有关贸易对经济增长的影响的经验研究。
translated by 谷歌翻译
我们提出了对学度校正随机块模型(DCSBM)的合适性测试。该测试基于调整后的卡方统计量,用于测量$ n $多项式分布的组之间的平等性,该分布具有$ d_1,\ dots,d_n $观测值。在网络模型的背景下,多项式的数量($ n $)的数量比观测值数量($ d_i $)快得多,与节点$ i $的度相对应,因此设置偏离了经典的渐近学。我们表明,只要$ \ {d_i \} $的谐波平均值生长到无穷大,就可以使统计量在NULL下分配。顺序应用时,该测试也可以用于确定社区数量。该测试在邻接矩阵的压缩版本上进行操作,因此在学位上有条件,因此对大型稀疏网络具有高度可扩展性。我们结合了一个新颖的想法,即在测试$ K $社区时根据$(k+1)$ - 社区分配来压缩行。这种方法在不牺牲计算效率的情况下增加了顺序应用中的力量,我们证明了它在恢复社区数量方面的一致性。由于测试统计量不依赖于特定的替代方案,因此其效用超出了顺序测试,可用于同时测试DCSBM家族以外的各种替代方案。特别是,我们证明该测试与具有社区结构的潜在可变性网络模型的一般家庭一致。
translated by 谷歌翻译
矩阵值数据在许多应用中越来越普遍。这种类型数据的大多数现有的聚类方法都是针对均值模型定制的,并且不考虑特征的依赖结构,这可能非常有信息,尤其是在高维设置中。要从群集结构中提取信息以进行群集,我们提出了一种以矩阵形式排列的特征的新潜在变量模型,其中一些未知的隶属矩阵表示行和列的群集。在该模型下,我们进一步提出了一类使用加权协方差矩阵的差异作为异化测量的分层聚类算法。从理论上讲,我们表明,在温和条件下,我们的算法在高维设置中达到聚类一致性。虽然这种一致性结果为我们的算法具有广泛的加权协方差矩阵,但该结果的条件取决于重量的选择。为了调查重量如何影响我们算法的理论性能,我们在我们的潜在变量模型下建立了群集的最小限制。鉴于这些结果,我们在使用此权重的意义上识别最佳权重,保证我们的算法在某些集群分离度量的大小方面是最佳的最佳速率。还讨论了我们具有最佳权重的算法的实际实现。最后,我们进行仿真研究以评估我们算法的有限样本性能,并将该方法应用于基因组数据集。
translated by 谷歌翻译