在二进制分类中,不平衡是指一个类受到重量级的情况。这个问题是由于数据收集过程,或者是一个班级的人口中罕见。生物学,医学,工程和社会科学等应用中经常出现不平衡的分类。在本手稿中,我们首次学习不平衡课程大小对高尺寸线性判别分析(LDA)的影响。我们表明,由于一类中的数据稀缺,称为少数阶级,以及特征空间的高度,LDA忽略了少数阶级,产生了最大的错误分类率。然后,我们基于划分和征服技术提出了一种新的硬阈值规则的建设,这减少了错误分类率之间的巨大差异。我们表明所提出的方法是渐近最佳的。我们进一步研究了不平衡案例中的两个已知众所周知的LDA稀疏版本。我们使用模拟评估不同方法的有限样本性能,并通过分析两个真实数据集。结果表明,我们的方法胜过其竞争对手或基于所选特征的小区的较小子集具有可比性,同时计算更有效。
translated by 谷歌翻译
在许多情况下,例如全基因组关联研究,通常存在变量之间的依赖性,通常可以推断模型中的相互作用效应。但是,在复杂和高维数据中数百万变量之间的成对相互作用受到低统计功率和巨大的计算成本的影响。为了应对这些挑战,我们提出了一个具有错误发现率(FDR)控制的两阶段测试程序,该程序被称为不太保守的多次测试校正。从理论上讲,FDR控制会费在两个阶段的数据依赖性方面的难度以及第二阶段进行的假设检验的数量取决于第一阶段的筛选结果。通过使用CRAM \'ER类型中度偏差技术,我们表明我们的过程在普遍的线性模型(GLM)中渐近地控制FDR,其中允许模型被误认为。另外,严格确定了FDR控制程序的渐近力。我们通过全面的仿真研究证明,我们的两阶段程序在计算上比经典BH程序具有可比或改进的统计能力更有效。最后,我们将提出的方法应用于DBGAP的膀胱癌数据,科学目标是鉴定膀胱癌的遗传易感性基因座。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
组选择的最佳子集(BSG)是选择一小部分非重叠组以在响应变量上获得最佳解释性的过程。它吸引了越来越多的关注,并且在实践中具有深远的应用。但是,由于BSG在高维环境中的计算棘手性,开发用于解决BSGS的有效算法仍然是研究热点。在本文中,我们提出了一种划分的算法,该算法迭代地检测相关组并排除了无关的组。此外,再加上新的组信息标准,我们开发了一种自适应算法来确定最佳模型大小。在轻度条件下,我们的算法可以在多项式时间内以高概率确定组的最佳子集是可以证明的。最后,我们通过将它们与合成数据集和现实世界中的几种最新算法进行比较来证明我们的方法的效率和准确性。
translated by 谷歌翻译
由于其出色的经验表现,随机森林是过去十年中使用的机器学习方法之一。然而,由于其黑框的性质,在许多大数据应用中很难解释随机森林的结果。量化各个特征在随机森林中的实用性可以大大增强其解释性。现有的研究表明,一些普遍使用的特征对随机森林的重要性措施遭受了偏见问题。此外,对于大多数现有方法,缺乏全面的规模和功率分析。在本文中,我们通过假设检验解决了问题,并提出了一个自由化特征 - 弥散性相关测试(事实)的框架,以评估具有偏见性属性的随机森林模型中给定特征的重要性,我们零假设涉及该特征是否与所有其他特征有条件地独立于响应。关于高维随机森林一致性的一些最新发展,对随机森林推断的这种努力得到了赋予的能力。在存在功能依赖性的情况下,我们的事实测试的香草版可能会遇到偏见问题。我们利用偏置校正的不平衡和调节技术。我们通过增强功率的功能转换将合奏的想法进一步纳入事实统计范围。在相当普遍的具有依赖特征的高维非参数模型设置下,我们正式确定事实可以提供理论上合理的随机森林具有P值,并通过非催化分析享受吸引人的力量。新建议的方法的理论结果和有限样本优势通过几个模拟示例和与Covid-19的经济预测应用进行了说明。
translated by 谷歌翻译
许多领域经常遇到包含分类和连续变量的数据集,并且随着现代测量技术的快速发展,这些变量的尺寸可以非常高。尽管最近在为连续变量进行建模高维数据方面取得了进展,但缺乏可以处理混合变量的方法稀缺。为了填补这一差距,本文开发了一种用混合变量对高维观察进行分类的新方法。我们的框架在一个位置模型上构建,其中假设高斯的连续变量条件的连续变量的分布。我们克服了必须将数据分成指数最多的细胞的挑战,或者通过内核平滑来分类变量的组合,并为其带宽选择提供新的视角,以确保Bochner的引理程序的类似物,这与通常的偏差方差不同权衡。我们表明我们模型中的两组参数可以单独估计,并为其估算提供惩罚可能性。结果估计准确度和错误分类率建立,并且通过广泛的模拟和实际数据研究说明了所提出的分类器的竞争性能。
translated by 谷歌翻译
在本文中,我们研究了高维条件独立测试,统计和机器学习中的关键构建块问题。我们提出了一种基于双生成对抗性网络(GANS)的推理程序。具体来说,我们首先介绍双GANS框架来学习两个发电机的条件分布。然后,我们将这两个生成器集成到构造测试统计,这采用多个转换函数的广义协方差措施的最大形式。我们还采用了数据分割和交叉拟合来最小化发电机上的条件,以实现所需的渐近属性,并采用乘法器引导来获得相应的$ P $ -Value。我们表明,构造的测试统计数据是双重稳健的,并且由此产生的测试既逆向I误差,并具有渐近的电源。同样的是,与现有测试相比,我们建立了较弱和实际上更可行的条件下的理论保障,我们的提案提供了如何利用某些最先进的深层学习工具(如GAN)的具体示例帮助解决古典但具有挑战性的统计问题。我们通过模拟和应用于抗癌药物数据集来证明我们的测试的疗效。在https://github.com/tianlinxu312/dgcit上提供了所提出的程序的Python实现。
translated by 谷歌翻译
大多数现有的分类方法旨在最大限度地减少整体错误分类错误率,但是,在应用程序中,不同类型的错误可能具有不同的后果。要考虑到这种不对称问题,已经开发了两个流行的范式,即Neyman-Pearson(NP)范式和成本敏感(CS)范式。与CS范例相比,NP PARADIGM不需要提高成本规范。最先前的NP Paradigm的作品集中在二进制案例上。在这项工作中,我们通过将其连接到CS问题并提出两种算法来研究多级NP问题。我们将NP Oracle不等式扩展到二进制案例到多级案例的一致性,并显示我们的两种算法在某些条件下享受这些属性。模拟和实际数据研究表明了我们算法的有效性。据我们所知,这是第一个通过具有理论保证的成本敏感的学习技术来解决多级NP问题的工作。所提出的算法在CRAN上的R包“NPCS”中实现。
translated by 谷歌翻译
In a high dimensional linear predictive regression where the number of potential predictors can be larger than the sample size, we consider using LASSO, a popular L1-penalized regression method, to estimate the sparse coefficients when many unit root regressors are present. Consistency of LASSO relies on two building blocks: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix of the regressors. In our setting where unit root regressors are driven by temporal dependent non-Gaussian innovations, we establish original probabilistic bounds for these two building blocks. The bounds imply that the rates of convergence of LASSO are different from those in the familiar cross sectional case. In practical applications given a mixture of stationary and nonstationary predictors, asymptotic guarantee of LASSO is preserved if all predictors are scale-standardized. In an empirical example of forecasting the unemployment rate with many macroeconomic time series, strong performance is delivered by LASSO when the initial specification is guided by macroeconomic domain expertise.
translated by 谷歌翻译
多变量功能数据的协方差结构可以高度复杂,特别是如果多变量维度大,则使标准多变量数据的统计方法的扩展到功能数据设置具有挑战性。例如,通过将多变量方法应用于截断的基础扩展系数,最近已经扩展到高斯图形模型。然而,与多变量数据相比的关键难度是协方差操作员紧凑,因此不可逆转。本文中的方法论地解决了多元函数数据的协方差建模的一般问题,特别是特定功能性高斯图形模型。作为第一步,提出了多变量功能数据的协方差运算符的可分离性的新概念,称为部分可分离性,导致这种数据的新型Karhunen-Lo \“Eve型扩展。接下来,示出部分可分离结构是特别有用的,以提供可以用一系列有限维图形模型,每个相同的固定尺寸识别的明确定义的功能高斯图形模型。这通过应用联合图形套索来激发一个简单有效的估计过程。通过在电机任务期间的模拟和分析功能性脑连接的仿真和分析来评估图形模型估计方法的经验性能。通过在电机任务期间的仿真和分析来评估图形模型估计方法的百分比实证性能。
translated by 谷歌翻译
稳定性选择(Meinshausen和Buhlmann,2010)通过返回许多副页面一致选择的功能来使任何特征选择方法更稳定。我们证明(在我们的知识中,它的知识,它的第一个结果),对于包含重要潜在变量的高度相关代理的数据,套索通常选择一个代理,但与套索的稳定性选择不能选择任何代理,导致比单独的套索更糟糕的预测性能。我们介绍集群稳定性选择,这利用了从业者的知识,即数据中存在高度相关的集群,从而产生比此设置中的稳定性选择更好的特征排名。我们考虑了几种特征组合方法,包括在每个重要集群中占据各个重要集群中的特征的加权平均值,其中重量由选择集群成员的频率决定,我们显示的是比以前的提案更好地导致更好的预测模型。我们呈现来自Meinshausen和Buhlmann(2010)和Shah和Samworth(2012)的理论担保的概括,以表明集群稳定选择保留相同的保证。总之,集群稳定性选择享有两个世界的最佳选择,产生既稳定的稀疏选择集,具有良好的预测性能。
translated by 谷歌翻译
我们讨论了具有未知IV有效性的线性仪器变量(IV)模型中识别的基本问题。我们重新审视了流行的多数和多元化规则,并表明通常没有识别条件是“且仅在总体上”。假设“最稀少的规则”,该规则等同于多数规则,但在计算算法中变得运作,我们研究并证明了基于两步选择的其他IV估计器的非convex惩罚方法的优势,就两步选择而言选择一致性和单独弱IV的适应性。此外,我们提出了一种与识别条件保持一致的替代较低的惩罚,并同时提供甲骨文稀疏结构。与先前的文献相比,针对静脉强度较弱的估计仪得出了理想的理论特性。使用模拟证明了有限样本特性,并且选择和估计方法应用于有关贸易对经济增长的影响的经验研究。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
我们考虑使用共享结构估算两个功能无向图形模型之间的差异的问题。在许多应用中,数据自然被认为是随机函数的向量而不是标量的矢量。例如,脑电图(EEG)数据更适当地被视为时间函数。在这样的问题中,不仅可以每个样本测量的函数数量大,而且每个功能都是自身是无限尺寸对象,使估计模型参数具有挑战性。这进一步复杂于曲线通常仅在离散时间点观察到。我们首先定义一个功能差异图,捕获两个功能图形模型之间的差异,并在功能性差分图定义良好时正式表征。然后,我们提出了一种方法,软件,直接估计功能差异图,而不首先估计每个图形。这在各个图形是密集的情况下,这是特别有益的,但差分图是稀疏的。我们表明,融合始终估计功能差图,即使在全面观察和离散的功能路径的高维设置中也是如此。我们通过仿真研究说明了我们方法的有限样本性质。我们还提出了一种竞争方法,该方法是关节功能图形套索,它概括了关节图形套索到功能设置。最后,我们将我们的方法应用于EEG数据,以揭示一群含有酒精使用障碍和对照组的个体之间的功能性脑连接的差异。
translated by 谷歌翻译
在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
交叉验证是在许多非参数回归问题中调整参数选择的标准方法。然而,它在变化点回归中的使用不太常见,也许由于其预测误差的标准可能似乎允许小的虚假变化,因此不太适合估计变化点的数量和位置。我们表明,实际上,具有平方误差损失的交叉验证问题更严重,可以导致系统的减少或过度估计变化点的数量,以及在更改的简单设置中的平均功能的高度次优估计很容易检测到。我们提出了两种简单的方法来解决这些问题,第一个涉及使用绝对误差而不是平方误差损失,以及第二个涉及修改所用的熔断集。对于后者,我们提供了允许一致估计一般变更点估计程序的变化点数的条件。我们显示这些条件对于使用新结果的最佳分区满足其在提供错误数量的更改点时的性能。数值实验表明,特别是当错误分布良好的调整参数选择时,特别是使用经典调谐参数选择的绝对误差方法竞争,但可以在错过的模型中显着优于这些。 CRAN上的R包CrossValidationCP中提供了我们的方法。
translated by 谷歌翻译
Sparse reduced rank regression is an essential statistical learning method. In the contemporary literature, estimation is typically formulated as a nonconvex optimization that often yields to a local optimum in numerical computation. Yet, their theoretical analysis is always centered on the global optimum, resulting in a discrepancy between the statistical guarantee and the numerical computation. In this research, we offer a new algorithm to address the problem and establish an almost optimal rate for the algorithmic solution. We also demonstrate that the algorithm achieves the estimation with a polynomial number of iterations. In addition, we present a generalized information criterion to simultaneously ensure the consistency of support set recovery and rank estimation. Under the proposed criterion, we show that our algorithm can achieve the oracle reduced rank estimation with a significant probability. The numerical studies and an application in the ovarian cancer genetic data demonstrate the effectiveness and scalability of our approach.
translated by 谷歌翻译
支持向量机(SVM)是一种强大的分类方法,在许多领域取得了巨大成功。由于其性能可能受到冗余协变量严重损害,因此模型选择技术广泛用于具有高维协调因子的SVM。作为模型选择的替代方案,在过去几十年的模型平均领域已经取得了重大进展。然而,对于SVM,没有考虑频繁的模型平均方法。这项工作旨在填补差距,并提出SVM的频繁模型平均程序,通过交叉验证选择最佳重量。即使当协变量的次数以相位大小的指数速率发散时,我们也显示了所提出的方法的渐近最优性,即其铰链损耗与最低可能损失的比率会聚到一个。我们还导出了融合率,为模型平均提供了更多的洞察。与SVM的模型选择方法相比,需要调整参数选择的繁琐但关键任务,模型平均方法避免了任务并在实证研究中显示了有希望的表现。
translated by 谷歌翻译
我们提出了对学度校正随机块模型(DCSBM)的合适性测试。该测试基于调整后的卡方统计量,用于测量$ n $多项式分布的组之间的平等性,该分布具有$ d_1,\ dots,d_n $观测值。在网络模型的背景下,多项式的数量($ n $)的数量比观测值数量($ d_i $)快得多,与节点$ i $的度相对应,因此设置偏离了经典的渐近学。我们表明,只要$ \ {d_i \} $的谐波平均值生长到无穷大,就可以使统计量在NULL下分配。顺序应用时,该测试也可以用于确定社区数量。该测试在邻接矩阵的压缩版本上进行操作,因此在学位上有条件,因此对大型稀疏网络具有高度可扩展性。我们结合了一个新颖的想法,即在测试$ K $社区时根据$(k+1)$ - 社区分配来压缩行。这种方法在不牺牲计算效率的情况下增加了顺序应用中的力量,我们证明了它在恢复社区数量方面的一致性。由于测试统计量不依赖于特定的替代方案,因此其效用超出了顺序测试,可用于同时测试DCSBM家族以外的各种替代方案。特别是,我们证明该测试与具有社区结构的潜在可变性网络模型的一般家庭一致。
translated by 谷歌翻译