在节点分类任务中,异常和过天性是两个可能损害图形卷积神经网络(GCN)性能的两个问题。异种源于问题是指模型无法处理异构节点属于不同类别的异细则图;过度问题是指模型的退化性能随着越来越多的层。这两个看似无关的问题大多是独立研究的,但最近有近期解决一个问题可能有益于另一个问题的经验证据。在这项工作中,除了经验观察之外,我们的目标是:(1)从统一的理论角度分析异常和过天际上的问题,(2)确定两个问题的共同原因,(3)提出简单但有效的解决策略共同的原因。在我们的理论分析中,我们表明异通源性和过天际上问题的共同原因 - 即节点的相对程度及其异常级别 - 触发连续层中的节点表示,以“移动”更靠近原始决策边界,这增加了某些约束下节点标签的错误分类率。理论上我们显示:(1)具有高异味的节点具有更高的错误分类率。 (2)即使在异常的情况下,节点邻域中的程度差异也可以影响节点表示的运动并导致“伪异性”情况,这有助于解释过度处理。 (3)允许在消息传递期间肯定的阳性而且负面信息可以有助于抵消两个问题的常见原因。基于我们的理论见解,我们提出了对GCN架构的简单修改(即学习程度校正和签名消息),我们表明他们在9个网络上缓解了HeteOlephily和过天际上的问题。
translated by 谷歌翻译
We investigate the representation power of graph neural networks in the semisupervised node classification task under heterophily or low homophily, i.e., in networks where connected nodes may have different class labels and dissimilar features. Many popular GNNs fail to generalize to this setting, and are even outperformed by models that ignore the graph structure (e.g., multilayer perceptrons). Motivated by this limitation, we identify a set of key designs-ego-and neighbor-embedding separation, higher-order neighborhoods, and combination of intermediate representations-that boost learning from the graph structure under heterophily. We combine them into a graph neural network, H 2 GCN, which we use as the base method to empirically evaluate the effectiveness of the identified designs. Going beyond the traditional benchmarks with strong homophily, our empirical analysis shows that the identified designs increase the accuracy of GNNs by up to 40% and 27% over models without them on synthetic and real networks with heterophily, respectively, and yield competitive performance under homophily.
translated by 谷歌翻译
Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data. Recently, GCNs and subsequent variants have shown superior performance in various application areas on real-world datasets. Despite their success, most of the current GCN models are shallow, due to the over-smoothing problem.In this paper, we study the problem of designing and analyzing deep graph convolutional networks. We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques: Initial residual and Identity mapping. We provide theoretical and empirical evidence that the two techniques effectively relieves the problem of over-smoothing. Our experiments show that the deep GCNII model outperforms the state-of-the-art methods on various semi-and fullsupervised tasks. Code is available at https: //github.com/chennnM/GCNII.
translated by 谷歌翻译
图形神经网络(GNNS)对图表上的半监督节点分类展示了卓越的性能,结果是它们能够同时利用节点特征和拓扑信息的能力。然而,大多数GNN隐含地假设曲线图中的节点和其邻居的标签是相同或一致的,其不包含在异质图中,其中链接节点的标签可能不同。因此,当拓扑是非信息性的标签预测时,普通的GNN可以显着更差,而不是在每个节点上施加多层Perceptrons(MLPS)。为了解决上述问题,我们提出了一种新的$ -laplacian基于GNN模型,称为$ ^ P $ GNN,其消息传递机制来自离散正则化框架,并且可以理论上解释为多项式图的近似值在$ p $ -laplacians的频谱域上定义过滤器。光谱分析表明,新的消息传递机制同时用作低通和高通滤波器,从而使$ ^ P $ GNNS对同性恋和异化图有效。关于现实世界和合成数据集的实证研究验证了我们的调查结果,并证明了$ ^ P $ GNN明显优于异交基准的几个最先进的GNN架构,同时在同性恋基准上实现竞争性能。此外,$ ^ p $ gnns可以自适应地学习聚合权重,并且对嘈杂的边缘具有强大。
translated by 谷歌翻译
最近,图形神经网络(GNN)通过利用图形结构和节点特征的知识来表现出图表表示的显着性能。但是,他们中的大多数都有两个主要限制。首先,GNN可以通过堆叠更多的层来学习高阶结构信息,但由于过度光滑的问题,无法处理较大的深度。其次,由于昂贵的计算成本和高内存使用情况,在大图上应用这些方法并不容易。在本文中,我们提出了节点自适应特征平滑(NAFS),这是一种简单的非参数方法,该方法构建了没有参数学习的节点表示。 NAFS首先通过特征平滑提取每个节点及其不同啤酒花的邻居的特征,然后自适应地结合了平滑的特征。此外,通过不同的平滑策略提取的平滑特征的合奏可以进一步增强构建的节点表示形式。我们在两个不同的应用程序方案上对四个基准数据集进行实验:节点群集和链接预测。值得注意的是,具有功能合奏的NAFS优于这些任务上最先进的GNN,并减轻上述大多数基于学习的GNN对应物的两个限制。
translated by 谷歌翻译
图表学习目的旨在将节点内容与图形结构集成以学习节点/图表示。然而,发现许多现有的图形学习方法在具有高异性级别的数据上不能很好地工作,这是不同类标签之间很大比例的边缘。解决这个问题的最新努力集中在改善消息传递机制上。但是,尚不清楚异质性是否确实会损害图神经网络(GNNS)的性能。关键是要展现一个节点与其直接邻居之间的关系,例如它们是异性还是同质性?从这个角度来看,我们在这里研究了杂质表示在披露连接节点之间的关系之前/之后的杂音表示的作用。特别是,我们提出了一个端到端框架,该框架既学习边缘的类型(即异性/同质性),并利用边缘类型的信息来提高图形神经网络的表现力。我们以两种不同的方式实施此框架。具体而言,为了避免通过异质边缘传递的消息,我们可以通过删除边缘分类器鉴定的异性边缘来优化图形结构。另外,可以利用有关异性邻居的存在的信息进行特征学习,因此,设计了一种混合消息传递方法来汇总同质性邻居,并根据边缘分类使异性邻居多样化。广泛的实验表明,在整个同质级别的多个数据集上,通过在多个数据集上提出的框架对GNN的绩效提高了显着提高。
translated by 谷歌翻译
A central challenge of building more powerful Graph Neural Networks (GNNs) is the oversmoothing phenomenon, where increasing the network depth leads to homogeneous node representations and thus worse classification performance. While previous works have only demonstrated that oversmoothing is inevitable when the number of graph convolutions tends to infinity, in this paper, we precisely characterize the mechanism behind the phenomenon via a non-asymptotic analysis. Specifically, we distinguish between two different effects when applying graph convolutions -- an undesirable mixing effect that homogenizes node representations in different classes, and a desirable denoising effect that homogenizes node representations in the same class. By quantifying these two effects on random graphs sampled from the Contextual Stochastic Block Model (CSBM), we show that oversmoothing happens once the mixing effect starts to dominate the denoising effect, and the number of layers required for this transition is $O(\log N/\log (\log N))$ for sufficiently dense graphs with $N$ nodes. We also extend our analysis to study the effects of Personalized PageRank (PPR) on oversmoothing. Our results suggest that while PPR mitigates oversmoothing at deeper layers, PPR-based architectures still achieve their best performance at a shallow depth and are outperformed by the graph convolution approach on certain graphs. Finally, we support our theoretical results with numerical experiments, which further suggest that the oversmoothing phenomenon observed in practice may be exacerbated by the difficulty of optimizing deep GNN models.
translated by 谷歌翻译
我们通过形式化节点标签的异质性(即连接的节点倾向于具有不同的标签)和GNN与对抗性攻击的稳健性来弥合图形神经网络(GNN)的两个研究方向。我们的理论和经验分析表明,对于同质图数据,有影响力的结构攻击始终导致同质性降低,而对于异性图数据,同质级别的变化取决于节点度。这些见解对防御对现实图形的攻击具有实际含义:我们推断出分离自我和邻居限制的汇总器,这是一种已确定的设计原则,可以显着改善异性图数据的预测,还可以为增强的鲁棒性提供稳健性gnns。我们的综合实验表明,与表现最好的未接种模型相比,GNN仅采用这种设计可以提高经验和可证明的鲁棒性。此外,与表现最佳的疫苗接种模型相比,这种设计与对抗性攻击的明确防御机制相结合,可提高稳健性,攻击性能在攻击下提高18.33%。
translated by 谷歌翻译
图形神经网络已成为从图形结构数据学习的不可缺少的工具之一,并且它们的实用性已在各种各样的任务中显示。近年来,建筑设计的巨大改进,导致各种预测任务的性能更好。通常,这些神经架构在同一层中使用可知的权重矩阵组合节点特征聚合和特征转换。这使得分析从各种跳过的节点特征和神经网络层的富有效力来挑战。由于不同的图形数据集显示在特征和类标签分布中的不同级别和异常级别,因此必须了解哪些特征对于没有任何先前信息的预测任务是重要的。在这项工作中,我们将节点特征聚合步骤和深度与图形神经网络分离,并经验分析了不同的聚合特征在预测性能中发挥作用。我们表明,并非通过聚合步骤生成的所有功能都很有用,并且通常使用这些较少的信息特征可能对GNN模型的性能有害。通过我们的实验,我们表明学习这些功能的某些子集可能会导致各种数据集的性能更好。我们建议使用Softmax作为常规器,并从不同跳距的邻居聚合的功能的“软选择器”;和L2 - GNN层的标准化。结合这些技术,我们呈现了一个简单浅的模型,特征选择图神经网络(FSGNN),并经验展示所提出的模型比九个基准数据集中的最先进的GNN模型实现了可比或甚至更高的准确性节点分类任务,具有显着的改进,可达51.1%。
translated by 谷歌翻译
提高GCN的深度(预计将允许更多表达性)显示出损害性能,尤其是在节点分类上。原因的主要原因在于过度平滑。过度平滑的问题将GCN的输出驱动到一个在节点之间包含有限的区别信息的空间,从而导致表现不佳。已经提出了一些有关完善GCN架构的作品,但理论上仍然未知这些改进是否能够缓解过度平衡。在本文中,我们首先从理论上分析了通用GCN如何与深度增加的作用,包括通用GCN,GCN,具有偏见,RESGCN和APPNP。我们发现所有这些模型都以通用过程为特征:所有节点融合到Cuboid。在该定理下,我们建议通过在每个训练时期随机去除一定数量的边缘来减轻过度光滑的状态。从理论上讲,Dropedge可以降低过度平滑的收敛速度,或者可以减轻尺寸崩溃引起的信息损失。对模拟数据集的实验评估已可视化不同GCN之间过度平滑的差异。此外,对几个真正的基准支持的广泛实验,这些实验始终如一地改善各种浅GCN和深度GCN的性能。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)在许多现实世界中的应用(例如建议和药物发现)中取得了巨大的成功。尽管取得了成功,但已将过度厚度确定为限制GNN绩效的关键问题之一。这表明由于堆叠聚合器,学到的节点表示是无法区分的。在本文中,我们提出了一种新的观点,以研究深度GNN的性能降低,即特征过度相关。通过有关此问题的经验和理论研究,我们证明了更深层次的GNN中的特征过度相关的存在,并揭示了导致该问题的潜在原因。为了减少功能相关性,我们提出了一个通用框架,可以鼓励GNN编码较少的冗余信息。广泛的实验表明,Decorr可以帮助实现更深入的GNN,并与现有的技术相辅相成。
translated by 谷歌翻译
图表卷积网络(GCN)显示了探索图形表示的显着潜力。然而,GCN聚合机制无法通过异常概括到网络上的网络,其中大多数节点具有来自不同类别的邻居,该邻居通常存在于现实网络中。为了使GCN的传播和聚合机制适合于粗源性和异常的(甚至它们的混合物),我们将块建模引入GCN的框架,以便它可以实现“块导向的分类聚合”,并自动学习不同类别邻居的相应聚合规则。通过将块建模掺入聚合过程中,GCN能够根据其同音程度判别歧视来自同性恋和异交邻居的信息。我们将我们的算法与最先进的方法进行了比较了异证问题。经验结果证明了我们在异交数据集中现有方法的新方法的优越性,同时在同性恋数据集中保持竞争性能。
translated by 谷歌翻译
由于它们对处理图形结构数据的显着功率,图表卷积网络(GCNS)已广泛应用于各个领域。典型的GCN及其变体在同声源性假设下工作(即,具有相同类的节点容易彼此连接),同时忽略许多真实网络中存在的异源性(即,具有不同类别的节点倾向于形成边缘) 。现有方法通过主要聚集高阶邻域或梳理即时表示来处理异常的方法,这导致结果导致噪声和无关的信息。但这些方法没有改变在同性恋假设下工作的传播机制(这是GCN的基本部分)。这使得难以区分不同类别的节点的表示。为了解决这个问题,在本文中,我们设计了一种新的传播机制,可以根据节点对之间自动或异常改变传播和聚合过程。为了自适应地学习传播过程,我们在节点对之间引入两个奇妙程度的两个测量,这分别基于拓扑和属性信息来学习。然后,我们将学习的同音源于Graph卷积框架纳入图形卷积框架,该框架在端到端的架构中培训,使其能够超越奇妙的假设。更重要的是,我们理论上证明我们的模型可以根据他们的同意程度来限制节点之间的表示的相似性。 7个现实世界数据集的实验表明,这种新方法在异常或低意识下表现出最先进的方法,并在精梳性下获得竞争性能。
translated by 谷歌翻译
图表神经网络(GNNS)在各种机器学习任务中获得了表示学习的提高。然而,应用邻域聚合的大多数现有GNN通常在图中的图表上执行不良,其中相邻的节点属于不同的类。在本文中,我们示出了在典型的异界图中,边缘可以被引导,以及是否像是处理边缘,也可以使它们过度地影响到GNN模型的性能。此外,由于异常的限制,节点对来自本地邻域之外的类似节点的消息非常有益。这些激励我们开发一个自适应地学习图表的方向性的模型,并利用潜在的长距离相关性节点之间。我们首先将图拉普拉斯概括为基于所提出的特征感知PageRank算法向数字化,该算法同时考虑节点之间的图形方向性和长距离特征相似性。然后,Digraph Laplacian定义了一个图形传播矩阵,导致一个名为{\ em diglaciangcn}的模型。基于此,我们进一步利用节点之间的通勤时间测量的节点接近度,以便在拓扑级别上保留节点的远距离相关性。具有不同级别的10个数据集的广泛实验,同意级别展示了我们在节点分类任务任务中对现有解决方案的有效性。
translated by 谷歌翻译
Graph neural networks have shown significant success in the field of graph representation learning. Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations. Nevertheless, one layer of these neighborhood aggregation methods only consider immediate neighbors, and the performance decreases when going deeper to enable larger receptive fields. Several recent studies attribute this performance deterioration to the over-smoothing issue, which states that repeated propagation makes node representations of different classes indistinguishable. In this work, we study this observation systematically and develop new insights towards deeper graph neural networks. First, we provide a systematical analysis on this issue and argue that the key factor compromising the performance significantly is the entanglement of representation transformation and propagation in current graph convolution operations. After decoupling these two operations, deeper graph neural networks can be used to learn graph node representations from larger receptive fields. We further provide a theoretical analysis of the above observation when building very deep models, which can serve as a rigorous and gentle description of the over-smoothing issue. Based on our theoretical and empirical analysis, we propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields. A set of experiments on citation, coauthorship, and co-purchase datasets have confirmed our analysis and insights and demonstrated the superiority of our proposed methods. CCS CONCEPTS• Mathematics of computing → Graph algorithms; • Computing methodologies → Artificial intelligence; Neural networks.
translated by 谷歌翻译
尽管近期图形神经网络(GNN)成功,但常见的架构通常表现出显着的限制,包括对过天飞机,远程依赖性和杂散边缘的敏感性,例如,由于图形异常或对抗性攻击。至少部分地解决了一个简单的透明框架内的这些问题,我们考虑了一个新的GNN层系列,旨在模仿和整合两个经典迭代算法的更新规则,即近端梯度下降和迭代重复最小二乘(IRLS)。前者定义了一个可扩展的基础GNN架构,其免受过性的,而仍然可以通过允许任意传播步骤捕获远程依赖性。相反,后者产生了一种新颖的注意机制,该注意机制被明确地锚定到底层端到端能量函数,以及相对于边缘不确定性的稳定性。当结合时,我们获得了一个非常简单而强大的模型,我们在包括标准化基准,与异常扰动的图形,具有异化的图形和涉及远程依赖性的图形的不同方案的极其简单而强大的模型。在此过程中,我们与已明确为各个任务设计的SOTA GNN方法进行比较,实现竞争或卓越的节点分类准确性。我们的代码可以在https://github.com/fftyyy/twirls获得。
translated by 谷歌翻译
图形神经网络(GNN)已被广泛用于表示图数据的表示。但是,对图形数据实际上获得多少性能GNN的理解有限。本文介绍了上下文弹出的GNN框架,并提出了两个平滑度指标,以测量从图形数据获得的信息的数量和质量。然后,一种称为CS-GNN的新型GNN模型旨在根据图的平滑度值改善图形信息的使用。证明CS-GNN比不同类型的真实图中现有方法获得更好的性能。
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are powerful tools for graph representation learning. Despite their rapid development, GNNs also face some challenges, such as over-fitting, over-smoothing, and non-robustness. Previous works indicate that these problems can be alleviated by random dropping methods, which integrate augmented data into models by randomly masking parts of the input. However, some open problems of random dropping on GNNs remain to be solved. First, it is challenging to find a universal method that are suitable for all cases considering the divergence of different datasets and models. Second, augmented data introduced to GNNs causes the incomplete coverage of parameters and unstable training process. Third, there is no theoretical analysis on the effectiveness of random dropping methods on GNNs. In this paper, we propose a novel random dropping method called DropMessage, which performs dropping operations directly on the propagated messages during the message-passing process. More importantly, we find that DropMessage provides a unified framework for most existing random dropping methods, based on which we give theoretical analysis of their effectiveness. Furthermore, we elaborate the superiority of DropMessage: it stabilizes the training process by reducing sample variance; it keeps information diversity from the perspective of information theory, enabling it become a theoretical upper bound of other methods. To evaluate our proposed method, we conduct experiments that aims for multiple tasks on five public datasets and two industrial datasets with various backbone models. The experimental results show that DropMessage has the advantages of both effectiveness and generalization, and can significantly alleviate the problems mentioned above.
translated by 谷歌翻译
过度平滑是一个具有挑战性的问题,这会降低深图卷积网络(GCNS)的性能。然而,用于缓解过度平滑问题的现有研究缺乏一般性或有效性。在本文中,我们分析了过度平滑问题背后的潜在问题,即特征 - 多样性退化,梯度消失和模型重量衰减。灵感来自于此,我们提出了一个简单而有效的即插即用模块,速度,缓解过度平滑。具体地,对于GCN模型的每个中间层,随机地(或基于节点度)选择节点以通过直接向非线性函数馈送它们的输入特征来跳过卷积操作。分析,1)跳过卷积操作可以防止特征失去多样性; 2)“跳过”节点使能梯度直接传递回来,从而减轻梯度消失和模型权重过腐蚀问题。为了展示Skipnode的优越性,我们对九个流行的数据集进行了广泛的实验,包括同性恋和异化图,在两个典型的任务上具有不同的图表大小:节点分类和链路预测。具体而言,1)SkipNode具有适应不同数据集和任务的各种基于GCN的模型的普遍性。 2)Skipnode优于最近最先进的反平滑插头 - 播放模块,即DropEdge和Dropnode,在不同的设置中。代码将在GitHub上公开提供。
translated by 谷歌翻译