正确分类对抗性示例是安全部署机器学习模型的必不可少但具有挑战性的要求。据抢救模型甚至是最先进的离职训练的模型,在CIFAR-10上努力超过67%的强大测试精度,这远非实用。互动的互补方法是引入拒绝选项,允许模型不返回对不确定输入的预测,自信是常用的确定性代理。随着这个例程,我们发现置信度和纠正的置信度(R-Con)可以形成两个耦合的拒绝度量,这可以从正确分类的次数中可以证明错误分类的输入。这种有趣的属性揭示了使用偶联策略来更好地检测和抑制对抗性实例。我们在包括自适应攻击的若干攻击下,在CiFar-10,CiFar-10-C和CiFar-100上评估我们的整流拒绝(RR)模块,并证明RR模块与改善稳健性的不同的对抗训练框架兼容额外的计算。代码可在https://github.com/p2333/Rectified-re注意到。
translated by 谷歌翻译
在对抗文献中,鲁棒性和准确性之间的权衡得到了广泛的研究。尽管仍然有争议,但普遍的观点是,从经验或理论上,这种权衡是固有的。因此,我们在对抗训练中挖掘了这种权衡的起源,发现它可能源于不当定义的可靠错误,该错误施加了局部不变性的诱导偏见 - 对平稳性的过度校正。鉴于此,我们主张采用局部模棱两可来描述健壮模型的理想行为,从而导致自洽的强大错误称为得分。根据定义,得分有助于稳健性与准确性之间的对帐,同时仍通过稳健优化处理最坏情况的不确定性。通过简单地将KL差异替换为距离指标的变体,得分可以有效地最小化。从经验上讲,我们的模型在AutoAttact下的强力板上实现了最高的性能。此外,得分提供了指导性见解,以解释在健壮模型上观察到的过度拟合现象和语义输入梯度。代码可在https://github.com/p2333/score上找到。
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
随机平滑是目前是最先进的方法,用于构建来自Neural Networks的可认真稳健的分类器,以防止$ \ ell_2 $ - vitersarial扰动。在范例下,分类器的稳健性与预测置信度对齐,即,对平滑分类器的较高的置信性意味着更好的鲁棒性。这使我们能够在校准平滑分类器的信仰方面重新思考准确性和鲁棒性之间的基本权衡。在本文中,我们提出了一种简单的训练方案,Coined Spiremix,通过自我混合来控制平滑分类器的鲁棒性:它沿着每个输入对逆势扰动方向进行样品的凸起组合。该提出的程序有效地识别过度自信,在平滑分类器的情况下,作为有限的稳健性的原因,并提供了一种直观的方法来自适应地在这些样本之间设置新的决策边界,以实现更好的鲁棒性。我们的实验结果表明,与现有的最先进的强大培训方法相比,该方法可以显着提高平滑分类器的认证$ \ ell_2 $ -toSpustness。
translated by 谷歌翻译
The field of defense strategies against adversarial attacks has significantly grown over the last years, but progress is hampered as the evaluation of adversarial defenses is often insufficient and thus gives a wrong impression of robustness. Many promising defenses could be broken later on, making it difficult to identify the state-of-the-art. Frequent pitfalls in the evaluation are improper tuning of hyperparameters of the attacks, gradient obfuscation or masking. In this paper we first propose two extensions of the PGD-attack overcoming failures due to suboptimal step size and problems of the objective function. We then combine our novel attacks with two complementary existing ones to form a parameter-free, computationally affordable and user-independent ensemble of attacks to test adversarial robustness. We apply our ensemble to over 50 models from papers published at recent top machine learning and computer vision venues. In all except one of the cases we achieve lower robust test accuracy than reported in these papers, often by more than 10%, identifying several broken defenses.
translated by 谷歌翻译
作为研究界,我们仍然缺乏对对抗性稳健性的进展的系统理解,这通常使得难以识别训练强大模型中最有前途的想法。基准稳健性的关键挑战是,其评估往往是出错的导致鲁棒性高估。我们的目标是建立对抗性稳健性的标准化基准,尽可能准确地反映出考虑在合理的计算预算范围内所考虑的模型的稳健性。为此,我们首先考虑图像分类任务并在允许的型号上引入限制(可能在将来宽松)。我们评估了与AutoAtrack的对抗鲁棒性,白和黑箱攻击的集合,最近在大规模研究中显示,与原始出版物相比,改善了几乎所有稳健性评估。为防止对自动攻击进行新防御的过度适应,我们欢迎基于自适应攻击的外部评估,特别是在自动攻击稳健性潜在高估的地方。我们的排行榜,托管在https://robustbench.github.io/,包含120多个模型的评估,并旨在反映在$ \ ell_ \ infty $的一套明确的任务上的图像分类中的当前状态 - 和$ \ ell_2 $ -Threat模型和共同腐败,未来可能的扩展。此外,我们开源源是图书馆https://github.com/robustbench/robustbench,可以提供对80多个强大模型的统一访问,以方便他们的下游应用程序。最后,根据收集的模型,我们分析了稳健性对分布换档,校准,分配检测,公平性,隐私泄漏,平滑度和可转移性的影响。
translated by 谷歌翻译
深度神经网络针对对抗性例子的脆弱性已成为将这些模型部署在敏感领域中的重要问题。事实证明,针对这种攻击的明确防御是具有挑战性的,依赖于检测对抗样本的方法只有在攻击者忽略检测机制时才有效。在本文中,我们提出了一种原则性的对抗示例检测方法,该方法可以承受规范受限的白色框攻击。受K类分类问题的启发,我们训练K二进制分类器,其中I-th二进制分类器用于区分I类的清洁数据和其他类的对抗性样本。在测试时,我们首先使用训练有素的分类器获取输入的预测标签(例如k),然后使用k-th二进制分类器来确定输入是否为干净的样本(k类)或对抗的扰动示例(其他类)。我们进一步设计了一种生成方法来通过将每个二进制分类器解释为类别条件数据的无标准密度模型来检测/分类对抗示例。我们提供上述对抗性示例检测/分类方法的全面评估,并证明其竞争性能和引人注目的特性。
translated by 谷歌翻译
尽管深层神经网络在各种任务中取得了巨大的成功,但它们对不可察觉的对抗性扰动的脆弱性阻碍了他们在现实世界中的部署。最近,与随机合奏的作品相对于经过最小的计算开销的标准对手训练(AT)模型,对对抗性训练(AT)模型的对抗性鲁棒性有了显着改善,这使它们成为安全临界资源限制应用程序的有前途解决方案。但是,这种令人印象深刻的表现提出了一个问题:这些稳健性是由随机合奏提供的吗?在这项工作中,我们从理论和经验上都解决了这个问题。从理论上讲,我们首先确定通常采用的鲁棒性评估方法(例如自适应PGD)在这种情况下提供了错误的安全感。随后,我们提出了一种理论上有效的对抗攻击算法(ARC),即使在自适应PGD无法做到这一点的情况下,也能妥协随机合奏。我们在各种网络体系结构,培训方案,数据集和规范上进行全面的实验,以支持我们的主张,并经验证明,随机合奏实际上比在模型上更容易受到$ \ ell_p $结合的对抗性扰动的影响。我们的代码可以在https://github.com/hsndbk4/arc上找到。
translated by 谷歌翻译
对抗性培训(AT)已成为培训强大网络的热门选择。然而,它倾向于牺牲清洁精度,以令人满意的鲁棒性,并且遭受大的概括误差。为了解决这些问题,我们提出了平稳的对抗培训(SAT),以我们对损失令人歉端的损失的终人谱指导。 We find that curriculum learning, a scheme that emphasizes on starting "easy" and gradually ramping up on the "difficulty" of training, smooths the adversarial loss landscape for a suitably chosen difficulty metric.我们展示了对普通环境中的课程学习的一般制定,并提出了一种基于最大Hessian特征值(H-SAT)和软MAX概率(P-SA)的两个难度指标。我们展示SAT稳定网络培训即使是大型扰动规范,并且允许网络以更好的清洁精度运行而与鲁棒性权衡曲线相比。与AT,交易和其他基线相比,这导致清洁精度和鲁棒性的显着改善。为了突出一些结果,我们的最佳模型将分别在CIFAR-100上提高6%和1%的稳健准确性。在Imagenette上,一个十一级想象成的子集,我们的模型分别以正常和强大的准确性达到23%和3%。
translated by 谷歌翻译
最近,张等人。(2021)基于$ \ ell_ \ infty $ -distance函数开发出一种新的神经网络架构,自然拥有经过认证的$ \ ell_ \ infty $坚固的稳健性。尽管具有出色的理论特性,但到目前为止的模型只能实现与传统网络的可比性。在本文中,我们通过仔细分析培训流程,大大提高了$ \ ell_ \ infty $ -distance网的认证稳健性。特别是,我们展示了$ \ ell_p $ -rexation,这是克服模型的非平滑度的关键方法,导致早期训练阶段的意外的大型嘴唇浓度。这使得优化不足以使用铰链损耗并产生次优溶液。鉴于这些调查结果,我们提出了一种简单的方法来解决上述问题,设计一种新的客观函数,这些功能将缩放的跨熵损失结合在剪切铰链损失。实验表明,使用拟议的培训策略,$ \ ell_ \ infty $-distance网的认证准确性可以从Cifar-10($ \ epsilon = 8/255 $)的33.30%到40.06%的显着提高到40.06%,同时显着优于表现优势该地区的其他方法。我们的结果清楚地展示了$ \ ell_ \ infty $-distance净的有效性和潜力,以获得认证的稳健性。代码在https://github.com/zbh2047/l_inf-dist-net-v2上获得。
translated by 谷歌翻译
由明确的反对派制作的对抗例子在机器学习中引起了重要的关注。然而,潜在虚假朋友带来的安全风险基本上被忽视了。在本文中,我们揭示了虚伪的例子的威胁 - 最初被错误分类但是虚假朋友扰乱的投入,以强迫正确的预测。虽然这种扰动的例子似乎是无害的,但我们首次指出,它们可能是恶意地用来隐瞒评估期间不合格(即,不如所需)模型的错误。一旦部署者信任虚伪的性能并在真实应用程序中应用“良好的”模型,即使在良性环境中也可能发生意外的失败。更严重的是,这种安全风险似乎是普遍存在的:我们发现许多类型的不合标准模型易受多个数据集的虚伪示例。此外,我们提供了第一次尝试,以称为虚伪风险的公制表征威胁,并试图通过一些对策来规避它。结果表明对策的有效性,即使在自适应稳健的培训之后,风险仍然是不可忽视的。
translated by 谷歌翻译
We show how to turn any classifier that classifies well under Gaussian noise into a new classifier that is certifiably robust to adversarial perturbations under the 2 norm. This "randomized smoothing" technique has been proposed recently in the literature, but existing guarantees are loose. We prove a tight robustness guarantee in 2 norm for smoothing with Gaussian noise. We use randomized smoothing to obtain an ImageNet classifier with e.g. a certified top-1 accuracy of 49% under adversarial perturbations with 2 norm less than 0.5 (=127/255). No certified defense has been shown feasible on ImageNet except for smoothing. On smaller-scale datasets where competing approaches to certified 2 robustness are viable, smoothing delivers higher certified accuracies. Our strong empirical results suggest that randomized smoothing is a promising direction for future research into adversarially robust classification. Code and models are available at http: //github.com/locuslab/smoothing.
translated by 谷歌翻译
Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low-and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.
translated by 谷歌翻译
Designing powerful adversarial attacks is of paramount importance for the evaluation of $\ell_p$-bounded adversarial defenses. Projected Gradient Descent (PGD) is one of the most effective and conceptually simple algorithms to generate such adversaries. The search space of PGD is dictated by the steepest ascent directions of an objective. Despite the plethora of objective function choices, there is no universally superior option and robustness overestimation may arise from ill-suited objective selection. Driven by this observation, we postulate that the combination of different objectives through a simple loss alternating scheme renders PGD more robust towards design choices. We experimentally verify this assertion on a synthetic-data example and by evaluating our proposed method across 25 different $\ell_{\infty}$-robust models and 3 datasets. The performance improvement is consistent, when compared to the single loss counterparts. In the CIFAR-10 dataset, our strongest adversarial attack outperforms all of the white-box components of AutoAttack (AA) ensemble, as well as the most powerful attacks existing on the literature, achieving state-of-the-art results in the computational budget of our study ($T=100$, no restarts).
translated by 谷歌翻译
深入学习在现代分类任务中取得了许多突破。已经提出了众多架构用于不同的数据结构,但是当涉及丢失功能时,跨熵损失是主要的选择。最近,若干替代损失已经看到了深度分类器的恢复利益。特别是,经验证据似乎促进了方形损失,但仍然缺乏理论效果。在这项工作中,我们通过系统地研究了在神经切线内核(NTK)制度中的过度分化的神经网络的表现方式来促进对分类方面损失的理论理解。揭示了关于泛化误差,鲁棒性和校准错误的有趣特性。根据课程是否可分离,我们考虑两种情况。在一般的不可分类案例中,为错误分类率和校准误差建立快速收敛速率。当类是可分离的时,错误分类率改善了速度快。此外,经过证明得到的余量被证明是低于零的较低,提供了鲁棒性的理论保证。我们希望我们的调查结果超出NTK制度并转化为实际设置。为此,我们对实际神经网络进行广泛的实证研究,展示了合成低维数据和真实图像数据中方损的有效性。与跨熵相比,方形损耗具有可比的概括误差,但具有明显的鲁棒性和模型校准的优点。
translated by 谷歌翻译
The evaluation of robustness against adversarial manipulation of neural networks-based classifiers is mainly tested with empirical attacks as methods for the exact computation, even when available, do not scale to large networks. We propose in this paper a new white-box adversarial attack wrt the l p -norms for p ∈ {1, 2, ∞} aiming at finding the minimal perturbation necessary to change the class of a given input. It has an intuitive geometric meaning, yields quickly high quality results, minimizes the size of the perturbation (so that it returns the robust accuracy at every threshold with a single run). It performs better or similar to stateof-the-art attacks which are partially specialized to one l p -norm, and is robust to the phenomenon of gradient masking.
translated by 谷歌翻译
在测试时间进行优化的自适应防御能力有望改善对抗性鲁棒性。我们对这种自适应测试时间防御措施进行分类,解释其潜在的好处和缺点,并评估图像分类的最新自适应防御能力的代表性。不幸的是,经过我们仔细的案例研究评估时,没有任何显着改善静态防御。有些甚至削弱了基本静态模型,同时增加了推理计算。尽管这些结果令人失望,但我们仍然认为自适应测试时间防御措施是一项有希望的研究途径,因此,我们为他们的彻底评估提供了建议。我们扩展了Carlini等人的清单。(2019年)通过提供针对自适应防御的具体步骤。
translated by 谷歌翻译
在对抗性鲁棒性的背景下,单个模型通常没有足够的力量来防御所有可能的对抗攻击,因此具有亚最佳的鲁棒性。因此,新兴的工作重点是学习神经网络的合奏,以防止对抗性攻击。在这项工作中,我们采取了一种有原则的方法来建立强大的合奏。我们从增强保证金的角度观察了这个问题,并开发了一种学习最大利润的合奏的算法。通过在基准数据集上进行广泛的经验评估,我们表明我们的算法不仅超过了现有的结合技术,而且还以端到端方式训练的大型模型。我们工作的一个重要副产品是边缘最大化的跨肠损失(MCE)损失,这是标准跨侧面(CE)损失的更好替代方法。从经验上讲,我们表明,用MCE损失取代最先进的对抗训练技术中的CE损失会导致显着提高性能。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
由于机器学习(ML)系统变得普遍存在,因此保护其安全性至关重要。然而,最近已经证明,动机的对手能够通过使用语义转换扰乱测试数据来误导ML系统。虽然存在丰富的研究机构,但为ML模型提供了可提供的稳健性保证,以防止$ \ ell_p $ norm界限对抗对抗扰动,抵御语义扰动的保证仍然很广泛。在本文中,我们提供了TSS - 一种统一的框架,用于针对一般对抗性语义转换的鲁棒性认证。首先,根据每个转换的性质,我们将常见的变换划分为两类,即可解决的(例如,高斯模糊)和差异可解的(例如,旋转)变换。对于前者,我们提出了特定于转型的随机平滑策略并获得强大的稳健性认证。后者类别涵盖涉及插值错误的变换,我们提出了一种基于分层采样的新方法,以证明稳健性。我们的框架TSS利用这些认证策略并结合了一致性增强的培训,以提供严谨的鲁棒性认证。我们对十种挑战性语义转化进行了广泛的实验,并表明TSS显着优于现有技术。此外,据我们所知,TSS是第一种在大规模想象数据集上实现非竞争认证稳健性的方法。例如,我们的框架在ImageNet上实现了旋转攻击的30.4%认证的稳健准确性(在$ \ PM 30 ^ \ CIC $)。此外,要考虑更广泛的转换,我们展示了TSS对自适应攻击和不可预见的图像损坏,例如CIFAR-10-C和Imagenet-C。
translated by 谷歌翻译