图形神经网络(GNN)被广泛用于在图形上执行不同的机器学习任务。随着图形的大小不断增长,GNN变得更深,除了记忆要求之外,训练和推理时间也变得昂贵。因此,在不牺牲准确性的情况下,图形稀疏或模型压缩成为图形学习任务的可行方法。一些现有技术仅研究图形和GNN模型的稀疏性。在本文中,我们开发了一条稀疏管道,以研究GNN中所有可能的稀疏。我们提供了理论分析,并从经验上表明,它可以在嵌入矩阵的情况下总计11.6 \%的额外稀疏性,而无需牺牲常用的基准图数据集的准确性。
translated by 谷歌翻译
随着实际图表的扩大,将部署具有数十亿个参数的较大GNN模型。此类模型中的高参数计数使图表的训练和推断昂贵且具有挑战性。为了降低GNN的计算和记忆成本,通常采用了输入图中的冗余节点和边缘等优化方法。但是,直接针对模型层稀疏的模型压缩,主要限于用于图像分类和对象检测等任务的传统深神网络(DNN)。在本文中,我们利用两种最先进的模型压缩方法(1)训练和修剪以及(2)稀疏训练GNN中的重量层。我们评估并比较了两种方法的效率,从精确性,训练稀疏性和现实世界图上的训练拖失lop方面。我们的实验结果表明,在IA-Email,Wiki-Talk和Stackoverflow数据集上,用于链接预测,稀疏训练和较低的训练拖失板可以使用火车和修剪方法达到可比的精度。在用于节点分类的大脑数据集上,稀疏训练使用较低的数字插槽(小于1/7的火车和修剪方法),并在极端模型的稀疏性下保留了更好的精度性能。
translated by 谷歌翻译
图形神经网络(GNNS)由于图形数据的规模和模型参数的数量呈指数增长,因此限制了它们在实际应用中的效用,因此往往会遭受高计算成本。为此,最近的一些作品着重于用彩票假设(LTH)稀疏GNN,以降低推理成本,同时保持绩效水平。但是,基于LTH的方法具有两个主要缺点:1)它们需要对密集模型进行详尽且迭代的训练,从而产生了极大的训练计算成本,2)它们仅修剪图形结构和模型参数,但忽略了节点功能维度,存在大量冗余。为了克服上述局限性,我们提出了一个综合的图形渐进修剪框架,称为CGP。这是通过在一个训练过程中设计在训练图周期修剪范式上进行动态修剪GNN来实现的。与基于LTH的方法不同,提出的CGP方法不需要重新训练,这大大降低了计算成本。此外,我们设计了一个共同策略,以全面地修剪GNN的所有三个核心元素:图形结构,节点特征和模型参数。同时,旨在完善修剪操作,我们将重生过程引入我们的CGP框架,以重新建立修剪但重要的连接。提出的CGP通过在6个GNN体系结构中使用节点分类任务进行评估,包括浅层模型(GCN和GAT),浅但深度散发模型(SGC和APPNP)以及Deep Models(GCNII和RESGCN),总共有14个真实图形数据集,包括来自挑战性开放图基准的大规模图数据集。实验表明,我们提出的策略在匹配时大大提高了训练和推理效率,甚至超过了现有方法的准确性。
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
最近,作为基于图形机器学习的骨干的图形神经网络(GNN)展示了各个域(例如,电子商务)的巨大成功。然而,由于基于高稀疏和不规则的图形操作,GNN的性能通常不令人满意。为此,我们提出,TC-GNN,基于GNN加速框架的第一个GPU张量核心单元(TCU)。核心思想是将“稀疏”GNN计算与“密集”TCU进行调和。具体地,我们对主流GNN计算框架中的稀疏操作进行了深入的分析。我们介绍了一种新颖的稀疏图翻译技术,便于TCU处理稀疏GNN工作量。我们还实现了一个有效的CUDA核心和TCU协作设计,以充分利用GPU资源。我们将TC-GNN与Pytorch框架完全集成,以便于编程。严格的实验在各种GNN型号和数据集设置的最先进的深图库框架上平均显示了1.70倍的加速。
translated by 谷歌翻译
最近,图形神经网络(GNN)通过利用图形结构和节点特征的知识来表现出图表表示的显着性能。但是,他们中的大多数都有两个主要限制。首先,GNN可以通过堆叠更多的层来学习高阶结构信息,但由于过度光滑的问题,无法处理较大的深度。其次,由于昂贵的计算成本和高内存使用情况,在大图上应用这些方法并不容易。在本文中,我们提出了节点自适应特征平滑(NAFS),这是一种简单的非参数方法,该方法构建了没有参数学习的节点表示。 NAFS首先通过特征平滑提取每个节点及其不同啤酒花的邻居的特征,然后自适应地结合了平滑的特征。此外,通过不同的平滑策略提取的平滑特征的合奏可以进一步增强构建的节点表示形式。我们在两个不同的应用程序方案上对四个基准数据集进行实验:节点群集和链接预测。值得注意的是,具有功能合奏的NAFS优于这些任务上最先进的GNN,并减轻上述大多数基于学习的GNN对应物的两个限制。
translated by 谷歌翻译
图表卷积网络(GCNS)已成为图形学习的最先进的深度学习模型。然而,在大型图形数据集中训练和推理GCN仍然令人惊奇地挑战,将其应用于大型真实图表并阻碍更深层和更复杂的GCN图形的探索。这是因为随着图形尺寸的增长,节点特征的纯粹数量和大邻接矩阵可以很容易地爆炸所需的内存和数据移动。为了解决上述挑战,我们探讨了在缩小GCN图表时绘制彩票票证的可能性,即,基本上缩小邻接矩阵的子图能够实现与完整图表相当的准确性。具体而言,我们首次发现在稀释GCN图的早期阶段的图表早期(GEB)票的存在,并提出了一种简单但有效的探测器,以自动识别这种GEB门票的出现。此外,我们倡导图形模型共同优化,开发了一个通用的GCN早期鸟类训练框架,称为GCN培训的效率(1)在GCN图形和模型之间绘制联合早期鸟类,( 2)启用GCN图形和模型的同时稀疏。关于各种GCN模型和数据集的实验一致地验证了我们的GEB寻找和GEBET的有效性,例如,我们的GEBT实现高达80.2%〜85.6%和84.6%〜87.5%的GCN培训和推理成本,同时提供了可比甚至与最先进的方法相比,更好的准确性。我们的源代码和补充附录可用于https://github.com/rice-eic/early-bird-gcn。
translated by 谷歌翻译
过度平滑是一个具有挑战性的问题,这会降低深图卷积网络(GCNS)的性能。然而,用于缓解过度平滑问题的现有研究缺乏一般性或有效性。在本文中,我们分析了过度平滑问题背后的潜在问题,即特征 - 多样性退化,梯度消失和模型重量衰减。灵感来自于此,我们提出了一个简单而有效的即插即用模块,速度,缓解过度平滑。具体地,对于GCN模型的每个中间层,随机地(或基于节点度)选择节点以通过直接向非线性函数馈送它们的输入特征来跳过卷积操作。分析,1)跳过卷积操作可以防止特征失去多样性; 2)“跳过”节点使能梯度直接传递回来,从而减轻梯度消失和模型权重过腐蚀问题。为了展示Skipnode的优越性,我们对九个流行的数据集进行了广泛的实验,包括同性恋和异化图,在两个典型的任务上具有不同的图表大小:节点分类和链路预测。具体而言,1)SkipNode具有适应不同数据集和任务的各种基于GCN的模型的普遍性。 2)Skipnode优于最近最先进的反平滑插头 - 播放模块,即DropEdge和Dropnode,在不同的设置中。代码将在GitHub上公开提供。
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
虽然有很多关于图像深度学习的硬件加速研究,但在加速涉及图形的深度学习应用时,有一个相当有利的专注。图的独特特性,例如不规则的内存访问和动态并行性,当算法映射到CPU或GPU时,施加有几个挑战。为了在利用所有可用的稀疏性的同时解决这些挑战,我们提出了一种灵活的架构,称为SPA-GCN,用于加速图形卷积网络(GCN),在图中的深度学习算法中的核心计算单元。该架构专门用于处理许多小图形,因为图表尺寸对设计考虑产生了重大影响。在这种情况下,我们使用SIMGNN是一种基于神经网络的图形匹配算法,作为展示我们架构的有效性的案例研究。实验结果表明,与多核CPU实施和GPU实施相比,SPA-GCN可以提供高速度,显示设计效率。
translated by 谷歌翻译
图形神经网络(GNNS)依赖于图形结构来定义聚合策略,其中每个节点通过与邻居的信息组合来更新其表示。已知GNN的限制是,随着层数的增加,信息被平滑,压扁并且节点嵌入式变得无法区分,对性能产生负面影响。因此,实用的GNN模型雇用了几层,只能在每个节点周围的有限邻域利用图形结构。不可避免地,实际的GNN不会根据图的全局结构捕获信息。虽然有几种研究GNNS的局限性和表达性,但是关于图形结构数据的实际应用的问题需要全局结构知识,仍然没有答案。在这项工作中,我们通过向几个GNN模型提供全球信息并观察其对下游性能的影响来认证解决这个问题。我们的研究结果表明,全球信息实际上可以为共同的图形相关任务提供显着的好处。我们进一步确定了一项新的正规化策略,导致所有考虑的任务的平均准确性提高超过5%。
translated by 谷歌翻译
Recent works have impressively demonstrated that there exists a subnetwork in randomly initialized convolutional neural networks (CNNs) that can match the performance of the fully trained dense networks at initialization, without any optimization of the weights of the network (i.e., untrained networks). However, the presence of such untrained subnetworks in graph neural networks (GNNs) still remains mysterious. In this paper we carry out the first-of-its-kind exploration of discovering matching untrained GNNs. With sparsity as the core tool, we can find \textit{untrained sparse subnetworks} at the initialization, that can match the performance of \textit{fully trained dense} GNNs. Besides this already encouraging finding of comparable performance, we show that the found untrained subnetworks can substantially mitigate the GNN over-smoothing problem, hence becoming a powerful tool to enable deeper GNNs without bells and whistles. We also observe that such sparse untrained subnetworks have appealing performance in out-of-distribution detection and robustness of input perturbations. We evaluate our method across widely-used GNN architectures on various popular datasets including the Open Graph Benchmark (OGB).
translated by 谷歌翻译
图形神经网络已成为从图形结构数据学习的不可缺少的工具之一,并且它们的实用性已在各种各样的任务中显示。近年来,建筑设计的巨大改进,导致各种预测任务的性能更好。通常,这些神经架构在同一层中使用可知的权重矩阵组合节点特征聚合和特征转换。这使得分析从各种跳过的节点特征和神经网络层的富有效力来挑战。由于不同的图形数据集显示在特征和类标签分布中的不同级别和异常级别,因此必须了解哪些特征对于没有任何先前信息的预测任务是重要的。在这项工作中,我们将节点特征聚合步骤和深度与图形神经网络分离,并经验分析了不同的聚合特征在预测性能中发挥作用。我们表明,并非通过聚合步骤生成的所有功能都很有用,并且通常使用这些较少的信息特征可能对GNN模型的性能有害。通过我们的实验,我们表明学习这些功能的某些子集可能会导致各种数据集的性能更好。我们建议使用Softmax作为常规器,并从不同跳距的邻居聚合的功能的“软选择器”;和L2 - GNN层的标准化。结合这些技术,我们呈现了一个简单浅的模型,特征选择图神经网络(FSGNN),并经验展示所提出的模型比九个基准数据集中的最先进的GNN模型实现了可比或甚至更高的准确性节点分类任务,具有显着的改进,可达51.1%。
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs-a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DIFFPOOL, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DIFFPOOL learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DIFFPOOL yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
translated by 谷歌翻译
Existing popular methods for semi-supervised learning with Graph Neural Networks (such as the Graph Convolutional Network) provably cannot learn a general class of neighborhood mixing relationships. To address this weakness, we propose a new model, MixHop, that can learn these relationships, including difference operators, by repeatedly mixing feature representations of neighbors at various distances. MixHop requires no additional memory or computational complexity, and outperforms on challenging baselines. In addition, we propose sparsity regularization that allows us to visualize how the network prioritizes neighborhood information across different graph datasets. Our analysis of the learned architectures reveals that neighborhood mixing varies per datasets. 1 We use "like", as graph edges are not axis-aligned.
translated by 谷歌翻译
数据处理的最新进展刺激了对非常大尺度的学习图的需求。众所周知,图形神经网络(GNN)是解决图形学习任务的一种新兴和有力的方法,很难扩大规模。大多数可扩展模型应用基于节点的技术来简化GNN的昂贵图形消息传播过程。但是,我们发现当应用于百万甚至数十亿尺度的图表时,这种加速度不足。在这项工作中,我们提出了Scara,这是一种可扩展的GNN,具有针对图形计算的特征优化。 Scara有效地计算出从节点功能中嵌入的图形,并进一步选择和重用功能计算结果以减少开销。理论分析表明,我们的模型在传播过程以及GNN培训和推理中具有确保精度,实现了子线性时间的复杂性。我们在各种数据集上进行了广泛的实验,以评估圣aca的功效和效率。与基线的性能比较表明,与快速收敛和可比精度相比,与当前的最新方法相比,圣aca最高可达到100倍的图形传播加速度。最值得注意的是,在100秒内处理最大的十亿个GNN数据集纸100m(1.11亿节点,1.6B边缘)上的预先计算是有效的。
translated by 谷歌翻译
图表神经网络(GNNS)在各种机器学习任务中获得了表示学习的提高。然而,应用邻域聚合的大多数现有GNN通常在图中的图表上执行不良,其中相邻的节点属于不同的类。在本文中,我们示出了在典型的异界图中,边缘可以被引导,以及是否像是处理边缘,也可以使它们过度地影响到GNN模型的性能。此外,由于异常的限制,节点对来自本地邻域之外的类似节点的消息非常有益。这些激励我们开发一个自适应地学习图表的方向性的模型,并利用潜在的长距离相关性节点之间。我们首先将图拉普拉斯概括为基于所提出的特征感知PageRank算法向数字化,该算法同时考虑节点之间的图形方向性和长距离特征相似性。然后,Digraph Laplacian定义了一个图形传播矩阵,导致一个名为{\ em diglaciangcn}的模型。基于此,我们进一步利用节点之间的通勤时间测量的节点接近度,以便在拓扑级别上保留节点的远距离相关性。具有不同级别的10个数据集的广泛实验,同意级别展示了我们在节点分类任务任务中对现有解决方案的有效性。
translated by 谷歌翻译
Traffic state prediction in a transportation network is paramount for effective traffic operations and management, as well as informed user and system-level decision-making. However, long-term traffic prediction (beyond 30 minutes into the future) remains challenging in current research. In this work, we integrate the spatio-temporal dependencies in the transportation network from network modeling, together with the graph convolutional network (GCN) and graph attention network (GAT). To further tackle the dramatic computation and memory cost caused by the giant model size (i.e., number of weights) caused by multiple cascaded layers, we propose sparse training to mitigate the training cost, while preserving the prediction accuracy. It is a process of training using a fixed number of nonzero weights in each layer in each iteration. We consider the problem of long-term traffic speed forecasting for a real large-scale transportation network data from the California Department of Transportation (Caltrans) Performance Measurement System (PeMS). Experimental results show that the proposed GCN-STGT and GAT-STGT models achieve low prediction errors on short-, mid- and long-term prediction horizons, of 15, 30 and 45 minutes in duration, respectively. Using our sparse training, we could train from scratch with high sparsity (e.g., up to 90%), equivalent to 10 times floating point operations per second (FLOPs) reduction on computational cost using the same epochs as dense training, and arrive at a model with very small accuracy loss compared with the original dense training
translated by 谷歌翻译
图形神经网络(GNNS)在建模图形结构数据方面表明了它们的能力。但是,实际图形通常包含结构噪声并具有有限的标记节点。当在这些图表中培训时,GNN的性能会显着下降,这阻碍了许多应用程序的GNN。因此,与有限标记的节点开发抗噪声GNN是重要的。但是,这是一个相当有限的工作。因此,我们研究了在具有有限标记节点的嘈杂图中开发鲁棒GNN的新问题。我们的分析表明,嘈杂的边缘和有限的标记节点都可能损害GNN的消息传递机制。为减轻这些问题,我们提出了一种新颖的框架,该框架采用嘈杂的边缘作为监督,以学习去噪和密集的图形,这可以减轻或消除嘈杂的边缘,并促进GNN的消息传递,以缓解有限标记节点的问题。生成的边缘还用于规则地将具有标记平滑度的未标记节点的预测规范化,以更好地列车GNN。实验结果对现实世界数据集展示了在具有有限标记节点的嘈杂图中提出框架的稳健性。
translated by 谷歌翻译
图表卷积网络(GCNS)已成为最先进的图形学习模型。但是,它可以令人难以置于大图数据集的推断GCNS,这会将其应用于大型实际图表并阻碍更深层更复杂的GCN图形的探讨。这是因为真实世界图可能非常大而稀疏。此外,GCN的节点度倾向于遵循幂律分布,因此具有高度不规则的邻接矩阵,导致数据处理和移动中的禁止低效率,从而显着地限制了可实现的GCN加速效率。为此,本文提出了一种GCN算法和加速器协同设计框架被称为GCOD,其在很大程度上可以缓解上述GCN不规则性并提高GCNS推理效率。具体地,在算法级别上,GCOD集成了分割和征服GCN训练策略,该训练策略将图形偏离在本地邻域中的密集或稀疏,而不会影响模型精度,从而导致(主要)的图形邻接矩阵仅仅是两个级别的工作量并享受大部分增强的规律性,从而轻松加速。在硬件水平上,我们进一步开发了一个具有分离发动机的专用双子加速器,以处理每个上述密集和稀疏工作负载,进一步提高整体利用率和加速效率。广泛的实验和消融研究验证了我们的GCOD始终如一地减少了与CPU,GPU和现有技术GCN加速器相比的15286倍,294倍,7.8倍和2.5倍的加速,包括HYGCN和AWB -GCN分别在保持甚至提高任务准确性的同时。
translated by 谷歌翻译