树种的手动标记仍然是一项具有挑战性的任务,尤其是在热带地区,由于无法获得和劳动密集型地面调查。高光谱图像(HSIS)通过其狭窄且连续的带,可以根据其光谱特性来区分树种。因此,HSI图像上的自动分类算法可以帮助增强有限的标记信息,并为各种树种生成实时分类图。通过图像中有限的标记信息,实现高分类精度是研究人员近年来开始应对的关键挑战之一。我们提出了一种新型的图形调节神经网络(GRNN)算法,该算法涵盖了基于超像素的分割用于图形结构,像素神经网络分类器和标签传播技术,以生成准确的分类图。 Grnn的表现不仅胜过标准的印度松树HSI的几种最先进技术,而且在法国圭亚那(FG)的森林中收集的新的HSI数据集上也达到了高分类的准确性(约92%)少于1%的像素被标记。我们表明,GRNN不仅与最先进的半监督方法具有竞争力,而且还表现出不同数量的训练样本的准确性差异和对标记像素进行培训的不同独立随机采样的差异。
translated by 谷歌翻译
高光谱成像是一种重要的传感技术,具有广泛的应用和环境科学,天气和地理/空间探索的地区的影响。高光谱图像(HSI)处理的一个重要任务是频谱空间特征的提取。利用多层网络(M-GSP)的最近开发的曲线图信号处理,这项工作提出了基于M-GSP特征提取的几种方法对HSI分段的方法。为了捕获联合光谱空间信息,我们首先为HSI定制一个基于张力的多层网络(MLN)模型,并为特征提取定义MLN奇异空间。然后,我们通过利用MLN谱聚类来开发无监督的HSI分段方法。通过MLN的聚类重新组合HSI像素,我们进一步提出了一种基于Superpixels的多分辨率融合的半监控HSI分类。我们的实验结果表明了HSI处理中M-GSP的强度和光谱 - 空间信息提取。
translated by 谷歌翻译
最近的研究表明,在高光谱图像(HSI)分类任务中,深度学习算法的巨大潜力。然而,培训这些模型通常需要大量标记的数据。由于针对HSI的像素级注释的收集是费力且耗时的,因此开发算法可以在小样本量的情况下产生良好的性能。在这项研究中,我们提出了一个强大的自我缩放网络(RSEN)来解决这个问题。拟议的RSEN由两个子网组成,包括基本网络和一个集合网络。鉴于标记数据的监督损失以及未经标记的数据的无监督损失,基本网络和整体网络都可以相互学习,从而实现自我启动的机制。据我们所知,提出的方法是首次尝试将自我汇总技术引入HSI分类任务,该任务提供了有关如何利用HSI中未标记数据来协助网络培训的不同观点。我们进一步提出了一种新型的一致性滤波器,以增加自我同步学习的鲁棒性。在三个基准HSI数据集上进行的广泛实验表明,与最新方法相比,所提出的算法可以产生竞争性能。代码可在线获得(\ url {https://github.com/yonghaoxu/rsen})。
translated by 谷歌翻译
近年来,由于海洋漏油事故严重影响环境,自然资源和沿海居民的生活,近年来,漏油事件引起了人们的关注。高光谱遥感图像提供了丰富的光谱信息,这对在复杂的海洋场景中监测漏油物有益。但是,大多数现有方法都是基于受监督和半监督的框架来检测高光谱图像(HSIS)的漏油事件,这些框架需要大量努力来注释一定数量的高质量训练集。在这项研究中,我们首次尝试基于HSIS的隔离森林开发无监督的漏油检测方法。首先,考虑到噪声水平在不同的频段之间有所不同,因此利用了噪声方差估计方法来评估不同频段的噪声水平,并且消除了因严重噪声而损坏的频段。其次,使用内核主成分分析(KPCA)来降低HSIS的高维度。然后,用隔离林估计属于海水和油泄漏之一的每个像素的概率,并且使用群集算法在检测到的概率上自动生产一组伪标记的训练样品。最后,可以通过在减少尺寸的数据上执行支持向量机(SVM)来获得初始检测图,然后,使用扩展的随机Walker(ERW)模型进一步优化初始检测结果,以改善检测检测漏油的准确性。关于我们自己创建的空气传播高光谱漏油数据(HOSD)的实验表明,该方法在其他最先进的检测方法方面获得了卓越的检测性能。
translated by 谷歌翻译
学习遥感图像的歧管结构对于建模和理解过程是最重要的相关性,以及封装在减少一组信息特征中的高维度,以用于后续分类,回归或解密。歧管学习方法显示出优异的性能来处理高光谱图像(HSI)分析,但除非专门设计,否则它们不能提供明确的嵌入式地图,容易适用于采样超出数据。处理问题的常见假设是高维输入空间和(通常低)潜空间之间的转换是线性的。这是一种特别强烈的假设,特别是当由于数据的众所周知的非线性性质而处理高光谱图像时。为了解决这个问题,提出了一种基于高维模型表示(HDMR)的歧管学习方法,这使得能够将非线性嵌入功能呈现给潜伏空间的采样外部样本。将所提出的方法与其线性对应物一起进行比较,并在代表性齐谱图像的分类精度方面实现了有希望的性能。
translated by 谷歌翻译
在本文中,我们提出了一种无监督的方法,用于高光谱遥感图像分割。该方法利用了平均移位聚类算法,该算法将作为输入的初步高光谱超像素分割以及光谱像素信息。所提出的方法不需要分割类的数量作为输入参数,也不需要利用有关要分割的土地覆盖或土地使用类型的A-Priori知识(例如水,植被,建筑等)。进行了Salinas,Salinasa,Pavia Center和Pavia University数据集的实验。绩效是根据归一化信息,调整后的RAND指数和F1得分来衡量的。结果证明了该方法与艺术状态相比的有效性。
translated by 谷歌翻译
随着深度学习技术的快速发展和计算能力的提高,深度学习已广泛应用于高光谱图像(HSI)分类领域。通常,深度学习模型通常包含许多可训练参数,并且需要大量标记的样品来实现最佳性能。然而,关于HSI分类,由于手动标记的难度和耗时的性质,大量标记的样本通常难以获取。因此,许多研究工作侧重于建立一个少数标记样本的HSI分类的深层学习模型。在本文中,我们专注于这一主题,并对相关文献提供系统审查。具体而言,本文的贡献是双重的。首先,相关方法的研究进展根据学习范式分类,包括转移学习,积极学习和少量学习。其次,已经进行了许多具有各种最先进的方法的实验,总结了结果以揭示潜在的研究方向。更重要的是,虽然深度学习模型(通常需要足够的标记样本)和具有少量标记样本的HSI场景之间存在巨大差距,但是通过深度学习融合,可以很好地表征小样本集的问题方法和相关技术,如转移学习和轻量级模型。为了再现性,可以在HTTPS://github.com/shuguoj/hsi-classification中找到纸张中评估的方法的源代码.git。
translated by 谷歌翻译
我们对最近的自我和半监督ML技术进行严格的评估,从而利用未标记的数据来改善下游任务绩效,以河床分割的三个遥感任务,陆地覆盖映射和洪水映射。这些方法对于遥感任务特别有价值,因为易于访问未标记的图像,并获得地面真理标签通常可以昂贵。当未标记的图像(标记数据集之外)提供培训时,我们量化性能改进可以对这些遥感分割任务进行期望。我们还设计实验以测试这些技术的有效性,当测试集相对于训练和验证集具有域移位时。
translated by 谷歌翻译
在半监督的学习领域中,作为GNN的变体模型,图形卷积网络(GCN)通过将卷积引入GNN来实现非欧盟数据的有希望的结果。但是,GCN及其变体模型无法安全地使用风险未标记数据的信息,这将降低半监督学习的性能。因此,我们提出了一个安全的GCN框架(SAFE-GCN),以提高学习绩效。在Safe-GCN中,我们设计了一个迭代过程来标记未标记的数据。在每次迭代中,学会了GCN及其监督版本(S-GCN),以高信任地找到未标记的数据。然后将高信心的未标记数据及其伪标签添加到标签集中。最后,两者都添加了未标记的数据和标记的数据来训练S-GCN,该S-GCN可以安全地探索风险未标记的数据,并可以安全使用大量未标记的数据。在三个众所周知的引用网络数据集上评估了安全性GCN的性能,并且获得的结果证明了该框架对几种基于图的半监督学习方法的有效性。
translated by 谷歌翻译
深度学习算法在非常高分辨率(VHR)图像的语义分割方面取得了巨大成功。然而,培训这些模型通常需要大量准确的像素注释,这非常费力且耗时。为了减轻注释负担,本文提出了一个一致性调节的区域生长网络(CRGNET),以实现具有点级注释的VHR图像的语义分割。 CRGNET的关键思想是迭代选择未标记的像素,具有很高的信心,可以从原始稀疏点扩展带注释的区域。但是,由于扩展的注释中可能存在一些错误和噪音,因此直接向它们学习可能会误导网络的培训。为此,我们进一步提出了一致性正则化策略,在该策略中,基本分类器和扩展的分类器被采用。具体而言,基本分类器受原始稀疏注释的监督,而扩展的分类器的目的是从基本分类器生成的扩展注释中学习具有区域生长机制。因此,通过最大程度地减少基础和扩展分类器的预测之间的差异来实现一致性正则化。我们发现如此简单的正则化策略对于控制区域生长机制的质量非常有用。在两个基准数据集上进行的广泛实验表明,所提出的CRGNET显着优于现有的最新方法。代码和预培训模型可在线获得(https://github.com/yonghaoxu/crgnet)。
translated by 谷歌翻译
与现场测量相比,遥感益处可以通过使大面积的监控更容易地进行栖息地保护,尤其是在可以自动分析遥感数据的情况下。监测的一个重要方面是对受监视区域中存在的栖息地类型进行分类和映射。自动分类是一项艰巨的任务,因为课程具有细粒度的差异,并且它们的分布是长尾巴且不平衡的。通常,用于自动土地覆盖分类的培训数据取决于完全注释的分割图,从遥感的图像到相当高的分类学,即森林,农田或市区等类别。自动栖息地分类的挑战是可靠的数据注释需要现场策略。因此,完整的分割图的生产成本很高,训练数据通常很稀疏,类似点,并且仅限于可以步行访问的区域。需要更有效地利用这些有限数据的方法。我们通过提出一种栖息地分类和映射的方法来解决这些问题,并应用此方法将整个芬兰拉普兰北部地区分类为Natura2000类。该方法的特征是使用从现场收集的细粒,稀疏,单像素注释,并与大量未经通知的数据结合在一起来产生分割图。比较了监督,无监督和半监督的方法,并证明了从较大的室外数据集中转移学习的好处。我们提出了一个\ ac {cnn}偏向于中心像素分类,与随机的森林分类器结合使用,该分类器比单独的模型本身产生更高的质量分类。我们表明,增加种植,测试时间的增加和半监督的学习可以进一步帮助分类。
translated by 谷歌翻译
近年来,新发现的矿物沉积物数量和不同矿物质需求的增加有LED探索地质学家,寻找在矿物勘探的每个阶段加工不同数据类型的更有效和创新的方法。作为主要步骤,诸如岩性单元,改变类型,结构和指示剂矿物的各种特征被映射以辅助靶向矿床的决策。不同类型的遥感数据集如卫星和空气传播数据,使得可以克服与映射地质特征相关的常见问题。从不同平台获得的遥感数据量的快速增加鼓励科学家培养先进,创新和强大的数据处理方法。机器学习方法可以帮助处理广泛的遥感数据集,并确定诸如反射连续体和感兴趣的特征的组件之间的关系。这些方法在处理频谱和地面真理测量中是稳健的,用于噪声和不确定性。近年来,通过补充与遥感数据集的地质调查进行了许多研究,现在在地球科学研究中突出。本文对一些流行的和最近建立的机器学习方法的实施和适应提供了全面的审查,用于处理不同类型的遥感数据,并调查其用于检测各种矿床类型的应用。我们展示了组合遥感数据和机器学习方法的高能力,以映射对于提供潜在地图至关重要的不同地质特征。此外,我们发现高级方法的范围来处理新一代遥感数据,以创建改进的矿物前景图。
translated by 谷歌翻译
机器学习(ML)是指根据大量数据预测有意义的输出或对复杂系统进行分类的计算机算法。 ML应用于各个领域,包括自然科学,工程,太空探索甚至游戏开发。本文的重点是在化学和生物海洋学领域使用机器学习。在预测全球固定氮水平,部分二氧化碳压力和其他化学特性时,ML的应用是一种有前途的工具。机器学习还用于生物海洋学领域,可从各种图像(即显微镜,流车和视频记录器),光谱仪和其他信号处理技术中检测浮游形式。此外,ML使用其声学成功地对哺乳动物进行了分类,在特定的环境中检测到濒临灭绝的哺乳动物和鱼类。最重要的是,使用环境数据,ML被证明是预测缺氧条件和有害藻华事件的有效方法,这是对环境监测的重要测量。此外,机器学习被用来为各种物种构建许多对其他研究人员有用的数据库,而创建新算法将帮助海洋研究界更好地理解海洋的化学和生物学。
translated by 谷歌翻译
疾病预测是医学应用中的知名分类问题。 GCNS提供了一个强大的工具,用于分析患者相对于彼此的特征。这可以通过将问题建模作为图形节点分类任务来实现,其中每个节点是患者。由于这种医学数据集的性质,类别不平衡是疾病预测领域的普遍存在问题,其中类的分布是歪曲的。当数据中存在类别不平衡时,现有的基于图形的分类器倾向于偏向于主要类别并忽略小类中的样本。另一方面,所有患者中罕见阳性病例的正确诊断在医疗保健系统中至关重要。在传统方法中,通过将适当的权重分配给丢失函数中的类别来解决这种不平衡,这仍然依赖于对异常值敏感的权重的相对值,并且在某些情况下偏向于小类(ES)。在本文中,我们提出了一种重加权的对抗性图形卷积网络(RA-GCN),以防止基于图形的分类器强调任何特定类的样本。这是通过将基于图形的神经网络与每个类相关联来完成的,这负责加权类样本并改变分类器的每个样本的重要性。因此,分类器自身调节并确定类之间的边界,更加关注重要样本。分类器和加权网络的参数受到侵犯方法训练。我们在合成和三个公共医疗数据集上显示实验。与最近的方法相比,ra-gcn展示了与最近的方法在所有三个数据集上识别患者状态的方法相比。详细分析作为合成数据集的定量和定性实验提供。
translated by 谷歌翻译
神经网络在医疗图像分割任务上的成功通常依赖于大型标记的数据集用于模型培训。但是,由于数据共享和隐私问题,获取和手动标记大型医疗图像集是资源密集的,昂贵的,有时是不切实际的。为了应对这一挑战,我们提出了一个通用的对抗数据增强框架Advchain,旨在提高培训数据对医疗图像分割任务的多样性和有效性。 AdvChain通过动态数据增强来增强数据,从而产生随机链接的光线像和几何转换,以类似于现实而又具有挑战性的成像变化以扩展训练数据。通过在培训期间共同优化数据增强模型和分割网络,可以生成具有挑战性的示例,以增强下游任务的网络可推广性。所提出的对抗数据增强不依赖生成网络,可以用作通用分割网络中的插件模块。它在计算上是有效的,适用于低声监督和半监督学习。我们在两个MR图像分割任务上分析和评估该方法:心脏分割和前列腺分割具有有限的标记数据。结果表明,所提出的方法可以减轻对标记数据的需求,同时提高模型泛化能力,表明其在医学成像应用中的实际价值。
translated by 谷歌翻译
确实,卷积神经网络(CNN)更合适。然而,固定内核大小使传统的CNN太具体,既不灵活也不有利于特征学习,从而影响分类准确性。不同内核大小网络的卷积可以通过捕获更多辨别和相关信息来克服这个问题。鉴于此,所提出的解决方案旨在将3D和2D成立网的核心思想与促进混合方案中的HSIC CNN性能提升。生成的\ Textit {注意融合混合网络}(AFNET)基于三个关注融合的并行混合子网,每个块中的不同内核使用高级功能,以增强最终的地面图。简而言之,AFNET能够选择性地过滤滤除对分类至关重要的辨别特征。与最先进的模型相比,HSI数据集的几次测试为AFNET提供了竞争力的结果。拟议的管道实现,实际上,印度松树的总体准确性为97 \%,博茨瓦纳100 \%,帕尔茨大学,帕维亚中心和萨利纳斯数据集的99 \%。
translated by 谷歌翻译
与RGB图像相比,高光谱图像包含更多数量的通道,因此包含有关图像中实体的更多信息。卷积神经网络(CNN)和多层感知器(MLP)已被证明是一种有效的图像分类方法。但是,他们遭受了长期培训时间和大量标记数据的要求,以达到预期的结果。在处理高光谱图像时,这些问题变得更加复杂。为了减少训练时间并减少对大型标记数据集的依赖性,我们建议使用转移学习方法。使用PCA将高光谱数据集预处理到较低的维度,然后将深度学习模型应用于分类。然后,转移学习模型使用该模型学到的功能来解决看不见的数据集上的新分类问题。进行了CNN和多个MLP体系结构模型的详细比较,以确定最适合目标的最佳体系结构。结果表明,层的缩放并不总是会导致准确性的提高,但通常会导致过度拟合,并增加训练时间。通过应用转移学习方法而不仅仅是解决问题,训练时间更大程度地减少了。通过直接在大型数据集上训练新模型,而不会影响准确性。
translated by 谷歌翻译
云和雪在可见和近红外(VNIR)范围内具有类似的光谱特征,因此难以在高分辨率VNIR图像中彼此区分。我们通过引入短波红外(SWIR)频段来解决这个问题,其中云具有高度反射性,雪是吸收的。由于与VNIR相比,由于苏尔州的分辨率通常是较低的分辨率,本研究提出了一种可以在VNIR图像中有效地检测云和雪的多分辨率全卷积神经网络(FCN)。我们融合了深fcn内的多分辨率频段,并在较高的VNIR分辨率下执行语义分割。这种基于融合的分类器,以端到端的方式训练,实现了94.31%的总体准确性和F1分数,在印度乌塔塔克手的州捕获的资源-2数据上的云。发现这些评分比随机森林分类器高30%,比独立单分辨率FCN高10%。除了对云检测目的有用外,该研究还突出了多传感器融合问题的卷积神经网络的潜力。
translated by 谷歌翻译
半监督的学习受到了最近的关注,因为它减轻了对大量标签数据的需求,这些数据通常很昂贵,需要专家知识并耗时收集。深度半监督分类的最新发展已经达到了前所未有的表现,而受监督和半监督学习之间的差距一直在挑战。这种绩效的改善是基于包含众多技术技巧,强大的增强技术和具有多项损失功能的昂贵优化方案。我们提出了一个新的框架,即laplacenet,以进行深度半监督分类,该分类大大降低了模型的复杂性。我们利用一种混合方法,在该方法中,通过将图表上的laplacian能量最小化来产生伪标记。然后,这些伪标签被用来迭代训练神经网络骨架。在几个基准数据集上,我们的模型优于深度半监督分类的最先进方法。此外,我们在理论上考虑了强大化对神经网络的应用,并证明使用多样采样方法对半监督学习的使用是合理的。我们通过严格的实验证明,多样采样增强方法可以改善概括并降低网络对增强的敏感性。
translated by 谷歌翻译
手工和小规模的黄金开采(ASGM)是许多家庭的重要收入来源,但它可以产生巨大的社会和环境影响,尤其是在发展中国家的雨林中。Sentinel-2卫星收集了多光谱图像,可用于检测水位和质量的变化,这表明采矿地点位置。这项工作着重于对秘鲁亚马逊雨林中ASGM活动的认可。我们根据支持向量机(SVM)测试了几个半监督分类器,以检测Madre de Dios地区从2019年到2021年的水体变化,这是ASGM活动的全球热点之一。实验表明,基于SVM的模型可以实现RGB的合理性能(使用Cohen的$ \ kappa $ 0.49)和6通道图像(使用Cohen的$ \ kappa $ 0.71),具有非常有限的注释。还分析了合并实验室色彩空间的功效。
translated by 谷歌翻译