深度学习算法在非常高分辨率(VHR)图像的语义分割方面取得了巨大成功。然而,培训这些模型通常需要大量准确的像素注释,这非常费力且耗时。为了减轻注释负担,本文提出了一个一致性调节的区域生长网络(CRGNET),以实现具有点级注释的VHR图像的语义分割。 CRGNET的关键思想是迭代选择未标记的像素,具有很高的信心,可以从原始稀疏点扩展带注释的区域。但是,由于扩展的注释中可能存在一些错误和噪音,因此直接向它们学习可能会误导网络的培训。为此,我们进一步提出了一致性正则化策略,在该策略中,基本分类器和扩展的分类器被采用。具体而言,基本分类器受原始稀疏注释的监督,而扩展的分类器的目的是从基本分类器生成的扩展注释中学习具有区域生长机制。因此,通过最大程度地减少基础和扩展分类器的预测之间的差异来实现一致性正则化。我们发现如此简单的正则化策略对于控制区域生长机制的质量非常有用。在两个基准数据集上进行的广泛实验表明,所提出的CRGNET显着优于现有的最新方法。代码和预培训模型可在线获得(https://github.com/yonghaoxu/crgnet)。
translated by 谷歌翻译
最近的研究表明,在高光谱图像(HSI)分类任务中,深度学习算法的巨大潜力。然而,培训这些模型通常需要大量标记的数据。由于针对HSI的像素级注释的收集是费力且耗时的,因此开发算法可以在小样本量的情况下产生良好的性能。在这项研究中,我们提出了一个强大的自我缩放网络(RSEN)来解决这个问题。拟议的RSEN由两个子网组成,包括基本网络和一个集合网络。鉴于标记数据的监督损失以及未经标记的数据的无监督损失,基本网络和整体网络都可以相互学习,从而实现自我启动的机制。据我们所知,提出的方法是首次尝试将自我汇总技术引入HSI分类任务,该任务提供了有关如何利用HSI中未标记数据来协助网络培训的不同观点。我们进一步提出了一种新型的一致性滤波器,以增加自我同步学习的鲁棒性。在三个基准HSI数据集上进行的广泛实验表明,与最新方法相比,所提出的算法可以产生竞争性能。代码可在线获得(\ url {https://github.com/yonghaoxu/rsen})。
translated by 谷歌翻译
深度神经网络(DNN)极大地促进了语义分割中的性能增益。然而,训练DNN通常需要大量的像素级标记数据,这在实践中收集昂贵且耗时。为了减轻注释负担,本文提出了一种自组装的生成对抗网络(SE-GAN)利用语义分割的跨域数据。在SE-GaN中,教师网络和学生网络构成用于生成语义分割图的自组装模型,与鉴别器一起形成GaN。尽管它很简单,我们发现SE-GaN可以显着提高对抗性训练的性能,提高模型的稳定性,这是由大多数普遍培训的方法共享的常见障碍。我们理论上分析SE-GaN并提供$ \ Mathcal o(1 / \ sqrt {n})$泛化绑定($ n $是培训样本大小),这表明控制了鉴别者的假设复杂性,以提高概括性。因此,我们选择一个简单的网络作为鉴别器。两个标准设置中的广泛和系统实验表明,该方法显着优于最新的最先进的方法。我们模型的源代码即将推出。
translated by 谷歌翻译
3D医学图像分割中卷积神经网络(CNN)的成功取决于大量的完全注释的3D体积,用于训练,这些训练是耗时且劳动力密集的。在本文中,我们建议在3D医学图像中只有7个点注释分段目标,并设计一个两阶段弱监督的学习框架PA-SEG。在第一阶段,我们采用大地距离变换来扩展种子点以提供更多的监督信号。为了在培训期间进一步处理未注释的图像区域,我们提出了两种上下文正则化策略,即多视图条件随机场(MCRF)损失和差异最小化(VM)损失,其中第一个鼓励具有相似特征的像素以具有一致的标签,第二个分别可以最大程度地减少分段前景和背景的强度差异。在第二阶段,我们使用在第一阶段预先训练的模型获得的预测作为伪标签。为了克服伪标签中的噪音,我们引入了一种自我和交叉监测(SCM)策略,该策略将自我训练与跨知识蒸馏(CKD)结合在主要模型和辅助模型之间,该模型从彼此生成的软标签中学习。在公共数据集的前庭造型瘤(VS)分割和脑肿瘤分割(BRAT)上的实验表明,我们在第一阶段训练的模型优于现有的最先进的弱监督方法,并在使用SCM之后,以提供其他scm来获得其他额外的scm培训,与Brats数据集中完全有监督的对应物相比,该模型可以实现竞争性能。
translated by 谷歌翻译
强大的语义细分面临的一个普遍挑战是昂贵的数据注释成本。现有的半监督解决方案显示出解决此问题的巨大潜力。他们的关键想法是通过未经监督的数据增加未标记的数据来构建一致性正则化,以进行模型培训。未标记数据的扰动使一致性训练损失使半监督的语义分割受益。但是,这些扰动破坏了图像上下文并引入了不自然的边界,这对语义分割是有害的。此外,广泛采用的半监督学习框架,即均值老师,遭受了绩效限制,因为学生模型最终会收敛于教师模型。在本文中,首先,我们提出了一个友好的可区分几何扭曲,以进行无监督的数据增强。其次,提出了一个新颖的对抗双重学生框架,以从以下两个方面从以下两个方面改善均等老师:(1)双重学生模型是独立学习的,除了稳定约束以鼓励利用模型多样性; (2)对对抗性训练计划适用于学生,并诉诸歧视者以区分无标记数据的可靠伪标签进行自我训练。通过对Pascal VOC2012和CityScapes进行的广泛实验来验证有效性。我们的解决方案可显着提高两个数据集的性能和最先进的结果。值得注意的是,与完全监督相比,我们的解决方案仅使用Pascal VOC2012上的12.5%注释数据获得了73.4%的可比MIOU。我们的代码和模型可在https://github.com/caocong/ads-semiseg上找到。
translated by 谷歌翻译
深度神经网络在许多重要的遥感任务中取得了巨大的成功。然而,不应忽略它们对对抗性例子的脆弱性。在这项研究中,我们第一次系统地在遥感数据中系统地分析了普遍的对抗示例,而没有受害者模型的任何知识。具体而言,我们提出了一种新型的黑盒对抗攻击方法,即混合攻击及其简单的变体混合尺寸攻击,用于遥感数据。提出方法的关键思想是通过攻击给定替代模型的浅层层中的特征来找到不同网络之间的共同漏洞。尽管它们很简单,但提出的方法仍可以生成可转移的对抗性示例,这些示例欺骗了场景分类和语义分割任务的大多数最新深层神经网络,并具有很高的成功率。我们进一步在名为AUAE-RS的数据集中提供了生成的通用对抗示例,该数据集是第一个在遥感字段中提供黑色框对面样本的数据集。我们希望阿联酋可以用作基准,以帮助研究人员设计具有对遥感领域对抗攻击的强烈抵抗力的深神经网络。代码和阿联酋-RS数据集可在线获得(https://github.com/yonghaoxu/uae-rs)。
translated by 谷歌翻译
利用深度学习的水提取需要精确的像素级标签。然而,在像素级别标记高分辨率遥感图像非常困难。因此,我们研究如何利用点标签来提取水体并提出一种名为邻居特征聚合网络(NFANET)的新方法。与PixelLevel标签相比,Point标签更容易获得,但它们会失去许多信息。在本文中,我们利用了局部水体的相邻像素之间的相似性,并提出了邻居采样器来重塑遥感图像。然后,将采样的图像发送到网络以进行特征聚合。此外,我们使用改进的递归训练算法进一步提高提取精度,使水边界更加自然。此外,我们的方法利用相邻特征而不是全局或本地特征来学习更多代表性。实验结果表明,所提出的NFANET方法不仅优于其他研究的弱监管方法,而且还获得与最先进的结果相似。
translated by 谷歌翻译
仅使用图像级标签的弱监督语义细分旨在降低分割任务的注释成本。现有方法通常利用类激活图(CAM)来定位伪标签生成的对象区域。但是,凸轮只能发现对象的最歧视部分,从而导致下像素级伪标签。为了解决这个问题,我们提出了一个限制的显着性和内类关系的显着性(I $^2 $ CRC)框架,以协助CAM中激活的对象区域的扩展。具体而言,我们提出了一个显着性指导的类不足的距离模块,以通过将特征对准其类原型来更接近类别内特征。此外,我们提出了一个特定的距离模块,以将类间特征推开,并鼓励对象区域的激活高于背景。除了加强分类网络激活CAM中更多积分对象区域的能力外,我们还引入了一个对象引导的标签细化模块,以完全利用分割预测和初始标签,以获取出色的伪标签。 Pascal VOC 2012和可可数据集的广泛实验很好地证明了I $^2 $ CRC的有效性,而不是其他最先进的对应物。源代码,模型和数据已在\ url {https://github.com/nust-machine-intelligence-laboratory/i2crc}提供。
translated by 谷歌翻译
当前弱监督的语义分割(WSSS)框架通常包含分离的掩模 - 细化模型和主要语义区域挖掘模型。这些方法将包含冗余特征提取骨干网和偏置的学习目标,使其计算复杂但是解决WSSS任务的子最优。为了解决这个问题,本文建立了一个紧凑的学习框架,将分类和掩码精细组件嵌入统一的深层模型。通过共享特征提取骨干通,我们的模型能够促进两个组件之间的知识共享,同时保留低计算复杂性。为了鼓励高质量的知识互动,我们提出了一种新颖的替代自我双重教学(ASDT)机制。与传统蒸馏策略不同,我们模型中的两个教师分支的知识通过脉冲宽度调制(PWM)替代地蒸馏到学生分支,该脉冲宽度调制(PWM)产生PW波形选择信号以引导知识蒸馏过程。通过这种方式,学生分支可以帮助阻止模型落入由教师分支提供的不完美知识引起的局部最低解决方案。 Pascal VOC的综合实验2012和Coco-Stuff 10K展示了拟议的替代自我双重教学机制的有效性以及我们方法的新的最新性能。
translated by 谷歌翻译
高分辨率卫星图像可以为土地覆盖分类提供丰富的详细空间信息,这对于研究复杂的建筑环境尤为重要。但是,由于覆盖范围复杂的覆盖模式,昂贵的训练样品收集以及卫星图像的严重分布变化,很少有研究应用高分辨率图像来大规模详细类别的覆盖地图。为了填补这一空白,我们提出了一个大规模的土地盖数据集,即五亿像素。它包含超过50亿个标记的像素,这些像素由150个高分辨率Gaofen-2(4 M)卫星图像,在24类系统中注释,涵盖人工结构,农业和自然阶层。此外,我们提出了一种基于深度学习的无监督域适应方法,该方法可以转移在标记的数据集(称为源域)上训练的分类模型,以获取大型土地覆盖映射的无标记数据(称为目标域) 。具体而言,我们采用动态伪标签分配和班级平衡策略来介绍一个端到端的暹罗网络,以执行自适应领域联合学习。为了验证我们的数据集的普遍性以及在不同的传感器和不同地理区域中提出的方法,我们对中国的五个大城市和其他五个亚洲国家的五个城市进行了土地覆盖地图,以下情况下使用:Planetscope(3 m),Gaofen-1,Gaofen-1 (8 m)和Sentinel-2(10 m)卫星图像。在总研究区域为60,000平方公里,即使输入图像完全未标记,实验也显示出令人鼓舞的结果。拟议的方法接受了5亿像素数据集的培训,可实现在整个中国和其他亚洲国家的高质量和详细的土地覆盖地图。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
语义细分是一种关键技术,涉及高分辨率遥感(HRS)图像的自动解释,并引起了遥感社区的广泛关注。由于其层次表示能力,深度卷积神经网络(DCNN)已成功应用于HRS图像语义分割任务。但是,对大量培训数据的严重依赖性以及对数据分布变化的敏感性严重限制了DCNNS在HRS图像的语义分割中的潜在应用。这项研究提出了一种新型的无监督域适应性语义分割网络(MemoryAdaptnet),用于HRS图像的语义分割。 MemoryAdaptnet构建了一种输出空间对抗学习方案,以弥合源域和目标域之间的域分布差异,并缩小域移位的影响。具体而言,我们嵌入了一个不变的特征内存模块来存储不变的域级上下文信息,因为从对抗学习获得的功能仅代表当前有限输入的变体特征。该模块由类别注意力驱动的不变域级上下文集合模块集成到当前伪不变功能,以进一步增强像素表示。基于熵的伪标签滤波策略用于更新当前目标图像的高额伪不变功能的内存模块。在三个跨域任务下进行的广泛实验表明,我们提出的记忆ADAPTNET非常优于最新方法。
translated by 谷歌翻译
弱监督的语义细分(WSSS)旨在仅使用用于训练的图像级标签来产生像素类预测。为此,以前的方法采用了通用管道:它们从类激活图(CAM)生成伪口罩,并使用此类掩码来监督分割网络。但是,由于凸轮的局部属性,即它们倾向于仅专注于小的判别对象零件,因此涵盖涵盖整个物体的全部范围的全面伪面罩是一项挑战。在本文中,我们将CAM的局部性与卷积神经网络(CNNS)的质地偏见特性相关联。因此,我们建议利用形状信息来补充质地偏见的CNN特征,从而鼓励掩模预测不仅是全面的,而且还与物体边界相交。我们通过一种新颖的改进方法进一步完善了在线方式的预测,该方法同时考虑了类和颜色亲和力,以生成可靠的伪口罩以监督模型。重要的是,我们的模型是在单阶段框架内进行端到端训练的,因此在培训成本方面有效。通过对Pascal VOC 2012的广泛实验,我们验证了方法在产生精确和形状对准的分割结果方面的有效性。具体而言,我们的模型超过了现有的最新单阶段方法。此外,当在没有铃铛和哨声的简单两阶段管道中采用时,它还在多阶段方法上实现了新的最新性能。
translated by 谷歌翻译
深度学习已成为火星探索的强大工具。火星地形细分是一项重要的火星愿景任务,它是漫游者自动计划和安全驾驶的基础。但是,现有的基于深度学习的地形细分方法遇到了两个问题:一个是缺乏足够的详细和高信心注释,另一个是模型过度依赖于注释的培训数据。在本文中,我们从联合数据和方法设计的角度解决了这两个问题。我们首先提出了一个新的火星地形细分数据集,该数据集包含6K高分辨率图像,并根据置信度稀疏注释,以确保标签的高质量。然后从这些稀疏的数据中学习,我们为火星地形细分的基于表示的学习框架,包括一个自我监督的学习阶段(用于预训练)和半监督的学习阶段(用于微调)。具体而言,对于自我监督的学习,我们设计了一个基于掩盖图像建模(MIM)概念的多任务机制,以强调图像的纹理信息。对于半监督的学习,由于我们的数据集很少注释,因此我们鼓励该模型通过在线生成和利用伪标签来挖掘每个图像中未标记的区域的信息。我们将数据集和方法命名为MARS(S $^{5} $ MARS)的自我监督和半监督分割。实验结果表明,我们的方法可以超越最先进的方法,并通过很大的边距提高地形分割性能。
translated by 谷歌翻译
Medical image segmentation methods typically rely on numerous dense annotated images for model training, which are notoriously expensive and time-consuming to collect. To alleviate this burden, weakly supervised techniques have been exploited to train segmentation models with less expensive annotations. In this paper, we propose a novel point-supervised contrastive variance method (PSCV) for medical image semantic segmentation, which only requires one pixel-point from each organ category to be annotated. The proposed method trains the base segmentation network by using a novel contrastive variance (CV) loss to exploit the unlabeled pixels and a partial cross-entropy loss on the labeled pixels. The CV loss function is designed to exploit the statistical spatial distribution properties of organs in medical images and their variance distribution map representations to enforce discriminative predictions over the unlabeled pixels. Experimental results on two standard medical image datasets demonstrate that the proposed method outperforms the state-of-the-art weakly supervised methods on point-supervised medical image semantic segmentation tasks.
translated by 谷歌翻译
从非结构化的3D点云学习密集点语义,虽然是一个逼真的问题,但在文献中探讨了逼真的问题。虽然现有的弱监督方法可以仅具有小数点的点级注释来有效地学习语义,但我们发现香草边界箱级注释也是大规模3D点云的语义分割信息。在本文中,我们介绍了一个神经结构,称为Box2Seg,以了解3D点云的点级语义,具有边界盒级监控。我们方法的关键是通过探索每个边界框内和外部的几何和拓扑结构来生成准确的伪标签。具体地,利用基于注意的自我训练(AST)技术和点类激活映射(PCAM)来估计伪标签。通过伪标签进行进一步培训并精制网络。在两个大型基准测试中的实验,包括S3DIS和Scannet,证明了该方法的竞争性能。特别是,所提出的网络可以培训,甚至是均匀的空缺边界箱级注释和子环级标签。
translated by 谷歌翻译
深度学习的快速发展在分割方面取得了长足的进步,这是计算机视觉的基本任务之一。但是,当前的细分算法主要取决于像素级注释的可用性,这些注释通常昂贵,乏味且费力。为了减轻这一负担,过去几年见证了越来越多的关注,以建立标签高效,深度学习的细分算法。本文对标签有效的细分方法进行了全面的审查。为此,我们首先根据不同类型的弱标签提供的监督(包括没有监督,粗略监督,不完整的监督和嘈杂的监督和嘈杂的监督),首先开发出一种分类法来组织这些方法,并通过细分类型(包括语义细分)补充,实例分割和全景分割)。接下来,我们从统一的角度总结了现有的标签有效的细分方法,该方法讨论了一个重要的问题:如何弥合弱监督和密集预测之间的差距 - 当前的方法主要基于启发式先导,例如交叉像素相似性,跨标签约束,跨视图一致性,跨图像关系等。最后,我们分享了对标签有效深层细分的未来研究方向的看法。
translated by 谷歌翻译
弱监督的点云语义分割方法需要1 \%或更少的标签,希望实现与完全监督的方法几乎相同的性能,这些方法最近引起了广泛的研究关注。该框架中的一个典型解决方案是使用自我训练或伪标记来从点云本身挖掘监督,但忽略了图像中的关键信息。实际上,在激光雷达场景中广泛存在相机,而这种互补信息对于3D应用似乎非常重要。在本文中,我们提出了一种用于3D分割的新型交叉模式弱监督的方法,并结合了来自未标记图像的互补信息。基本上,我们设计了一个配备有效标签策略的双分支网络,以最大程度地发挥标签的力量,并直接实现2D到3D知识转移。之后,我们以期望最大(EM)的视角建立了一个跨模式的自我训练框架,该框架在伪标签估计和更新参数之间进行了迭代。在M-Step中,我们提出了一个跨模式关联学习,通过增强3D点和2D超级像素之间的周期矛盾性,从图像中挖掘互补的监督。在E-Step中,伪标签的自我校准机制被得出过滤噪声标签,从而为网络提供了更准确的标签,以进行全面训练。广泛的实验结果表明,我们的方法甚至优于最先进的竞争对手,而少于1 \%的主动选择注释。
translated by 谷歌翻译
无监督的域适应性(UDA)旨在使标记的源域的模型适应未标记的目标域。现有的基于UDA的语义细分方法始终降低像素级别,功能级别和输出级别的域移动。但是,几乎所有这些都在很大程度上忽略了上下文依赖性,该依赖性通常在不同的领域共享,从而导致较不怀疑的绩效。在本文中,我们提出了一个新颖的环境感知混音(camix)框架自适应语义分割的框架,该框架以完全端到端的可训练方式利用了上下文依赖性的这一重要线索作为显式的先验知识,以增强对适应性的适应性目标域。首先,我们通过利用积累的空间分布和先前的上下文关系来提出上下文掩盖的生成策略。生成的上下文掩码在这项工作中至关重要,并将指导三个不同级别的上下文感知域混合。此外,提供了背景知识,我们引入了重要的一致性损失,以惩罚混合学生预测与混合教师预测之间的不一致,从而减轻了适应性的负面转移,例如早期绩效降级。广泛的实验和分析证明了我们方法对广泛使用的UDA基准的最新方法的有效性。
translated by 谷歌翻译
给定空中图像,空中场景解析(ASP)目标,以解释图像内容的语义结构,例如,通过将语义标签分配给图像的每个像素来解释图像内容的语义结构。随着数据驱动方法的推广,过去几十年通过在使用高分辨率航空图像时,通过接近基于瓦片级场景分类或分段的图像分析的方案来解决了对ASP的有希望的进展。然而,前者的方案通常会产生瓷砖技术边界的结果,而后者需要处理从像素到语义的复杂建模过程,这通常需要具有像素 - 明智语义标签的大规模和良好的图像样本。在本文中,我们在ASP中解决了这些问题,从瓷砖级场景分类到像素明智语义标签的透视图。具体而言,我们首先通过文献综述重新审视空中图像解释。然后,我们提出了一个大规模的场景分类数据集,其中包含一百万个空中图像被称为百万援助。使用所提出的数据集,我们还通过经典卷积神经网络(CNN)报告基准测试实验。最后,我们通过统一瓦片级场景分类和基于对象的图像分析来实现ASP,以实现像素明智的语义标记。密集实验表明,百万援助是一个具有挑战性但有用的数据集,可以作为评估新开发的算法的基准。当从百万辅助救援方面传输知识时,百万辅助的微调CNN模型始终如一,而不是那些用于空中场景分类的预磨料想象。此外,我们设计的分层多任务学习方法实现了对挑战GID的最先进的像素 - 明智的分类,拓宽了用于航空图像解释的像素明智语义标记的瓦片级场景分类。
translated by 谷歌翻译