尽管具有Relu激活功能的神经网络(NNS)在广泛的应用中找到了成功,但它们在风险敏感环境中的采用受到对稳健性和可解释性的担忧受到限制。以前的作品来检查稳健性,并改善解释性部分地利用了Relu Nn的分段线性函数形式。在本文中,我们探讨了relu nns在输入空间中创建的独特拓扑结构,识别分区本地多台之间的邻接并基于这种邻接的遍历算法。我们的Polytope Travering算法可以适用于验证与鲁棒性和解释性相关的广泛网络属性,提供统一的方法来检查网络行为。由于遍历算法显式访问所有本地多台面,因此它返回遍历区域内的网络行为清晰和完整的图像。遍历算法的时间和空间复杂性由通过穿过遍历区域的Relu NN分区超平面的数量来确定。
translated by 谷歌翻译
在本文中,我们介绍了两级晶格神经网络(FAST BATLLLNN)的刀具快速箱分析,作为两级格子(TLL)神经网络(NNS)的盒状输出约束的快速验证器。特别地,快速Batllnn可以验证给定TLL NN的输出是否始终在指定的超矩形内呈现,只要其输入约束到指定的凸多特级(不一定是超矩形)。 FAST BATLLNN使用TLL架构的唯一语义和盒状输出约束的解耦性质,从而显着提高具有通用多粒输出约束的TLL的已知多项式验证算法的验证性能。在本文中,我们评估了快速Batllnn的性能和可扩展性,无论是自身的权利,也与应用于TLL NNS的最先进的NN Verifers相比。快速的Batllnn比较最快的NN Verifiers非常有利地比较,完成我们的合成TLL测试台超过400倍,而不是最近的竞争对手。
translated by 谷歌翻译
我们考虑非线性优化问题,涉及神经网络代表代理模型。我们首先展示了如何直接将神经网络评估嵌入优化模型中,突出难以防止收敛的方法,然后表征这些模型的平稳性。然后,我们在具有Relu激活的前馈神经网络的特定情况下存在两种替代配方,其具有recu激活:作为混合整数优化问题,作为具有互补限制的数学程序。对于后一种制剂,我们证明了在该问题的点处的有同性,对应于嵌入式制剂的实质性。这些配方中的每一个都可以用最先进的优化方法来解决,并且我们展示了如何为这些方法获得良好的初始可行解决方案。我们将三种实际应用的配方进行比较,在燃烧发动机的设计和控制中产生的三种实际应用,在对分类器网络的对抗攻击中产生的产生,以及在油井网中的最佳流动确定。
translated by 谷歌翻译
我们提出了一个框架,用于稳定验证混合智能线性编程(MILP)代表控制策略。该框架比较了固定的候选策略,该策略承认有效的参数化,可以以低计算成本进行评估,与固定基线策略进行评估,固定基线策略已知稳定但评估昂贵。我们根据基线策略的最坏情况近似错误为候选策略的闭环稳定性提供了足够的条件,我们表明可以通过求解混合构成二次计划(MIQP)来检查这些条件。 。此外,我们证明可以通过求解MILP来计算候选策略的稳定区域的外部近似。所提出的框架足以容纳广泛的候选策略,包括Relu神经网络(NNS),参数二次程序的最佳解决方案图以及模型预测性控制(MPC)策略。我们还根据提议的框架在Python中提供了一个开源工具箱,该工具可以轻松验证自定义NN架构和MPC公式。我们在DC-DC电源转换器案例研究的背景下展示了框架的灵活性和可靠性,并研究了计算复杂性。
translated by 谷歌翻译
Learning monotonic models with respect to a subset of the inputs is a desirable feature to effectively address the fairness, interpretability, and generalization issues in practice. Existing methods for learning monotonic neural networks either require specifically designed model structures to ensure monotonicity, which can be too restrictive/complicated, or enforce monotonicity by adjusting the learning process, which cannot provably guarantee the learned model is monotonic on selected features. In this work, we propose to certify the monotonicity of the general piece-wise linear neural networks by solving a mixed integer linear programming problem.This provides a new general approach for learning monotonic neural networks with arbitrary model structures. Our method allows us to train neural networks with heuristic monotonicity regularizations, and we can gradually increase the regularization magnitude until the learned network is certified monotonic. Compared to prior works, our approach does not require human-designed constraints on the weight space and also yields more accurate approximation. Empirical studies on various datasets demonstrate the efficiency of our approach over the state-of-the-art methods, such as Deep Lattice Networks.
translated by 谷歌翻译
在过去的十年中,神经网络(NNS)已被广泛用于许多应用程序,包括安全系统,例如自主系统。尽管采用了新兴的采用,但众所周知,NNS容易受到对抗攻击的影响。因此,提供确保此类系统正常工作的保证非常重要。为了解决这些问题,我们介绍了一个修复不安全NNS W.R.T.的框架。安全规范,即利用可满足的模型理论(SMT)求解器。我们的方法能够通过仅修改其重量值的一些重量值来搜索新的,安全的NN表示形式。此外,我们的技术试图最大程度地提高与原始网络在其决策边界方面的相似性。我们进行了广泛的实验,以证明我们提出的框架能够产生安全NNS W.R.T.的能力。对抗性的鲁棒性特性,只有轻度的准确性损失(就相似性而言)。此外,我们将我们的方法与天真的基线进行比较,以证明其有效性。总而言之,我们提供了一种算法以自动修复具有安全性的算法,并建议一些启发式方法以提高其计算性能。当前,通过遵循这种方法,我们能够产生由分段线性relu激活函数组成的小型(即具有多达数百个参数)的小型(即具有多达数百个参数)。然而,我们的框架是可以合成NNS W.R.T.的一般框架。一阶逻辑规范的任何可决定片段。
translated by 谷歌翻译
我们提出了一种修复使用Relu激活功能的神经网络的新方法。与现有的方法依赖于修改可以诱导函数空间全局变化的神经网络的权重的现有方法不同,我们的方法仅应用功能空间的局部变化,同时仍然保证删除了车辆行为。通过利用Relu网络的分段线性性质,我们的方法可以有效地构建一个针对该线性输入驻留的线性区域量身定制的补丁网络,当与原始网络结合使用时,可以证明该网络可以纠正错误输入的行为。我们的方法既声音又完整 - 修复后的网络可以确保修复该越野车的输入,并确保为任何越野车输入找到一个补丁程序。此外,我们的方法保留了Relu网络的连续分段线性性质,自动将修复到所有要点的维修,包括维修区域内的其他未检测到的错误输入,在功能空间的变化方面是最小的,并确保输出输出输出。从维修区域不变。在几个基准上,我们表明我们的方法在区域性和限制负面影响方面显着优于现有方法。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
作为神经网络(NNS)越来越多地引入安全关键域,在部署之前越来越需要在部署之前正式验证NNS。在这项工作中,我们专注于NN等效的正式验证问题,其旨在证明两个NNS(例如原件和压缩版本)显示等效行为。已经提出了两种方法:混合整数线性编程和间隔传播。虽然第一种方法缺乏可扩展性,但后者仅适用于结构性相似的NN,其重量变化很小。我们纸张的贡献有四个部分。首先,我们通过证明epsilon-andatience问题是突出的,我们表现出理论结果。其次,我们扩展了Tran等人。单个NN几何路径枚举算法以多个NN的设置。在第三步中,我们实现了扩展算法,用于等价验证,评估其实际使用所需的优化。最后,我们执行比较评估,显示我们的方法优于前一种最先进的现有技术,两者,用于等效验证以及反例查找。
translated by 谷歌翻译
神经网络已广泛应用于垃圾邮件和网络钓鱼检测,入侵预防和恶意软件检测等安全应用程序。但是,这种黑盒方法通常在应用中具有不确定性和不良的解释性。此外,神经网络本身通常容易受到对抗攻击的影响。由于这些原因,人们对可信赖和严格的方法有很高的需求来验证神经网络模型的鲁棒性。对抗性的鲁棒性在处理恶意操纵输入时涉及神经网络的可靠性,是安全和机器学习中最热门的主题之一。在这项工作中,我们在神经网络的对抗性鲁棒性验证中调查了现有文献,并在机器学习,安全和软件工程领域收集了39项多元化研究工作。我们系统地分析了它们的方法,包括如何制定鲁棒性,使用哪种验证技术以及每种技术的优势和局限性。我们从正式验证的角度提供分类学,以全面理解该主题。我们根据财产规范,减少问题和推理策略对现有技术进行分类。我们还展示了使用样本模型在现有研究中应用的代表性技术。最后,我们讨论了未来研究的开放问题。
translated by 谷歌翻译
安全至关重要的应用中神经网络(NNS)的患病率的增加,要求采用证明安全行为的方法。本文提出了一种向后的可及性方法,以安全验证神经反馈循环(NFLS),即具有NN控制策略的闭环系统。尽管最近的作品集中在远程达到NFL的安全认证策略上,但落后性能比远期策略具有优势,尤其是在避免障碍的情况下。先前的工作已经开发了用于无NNS系统的向后可及性分析的技术,但是由于其激活功能的非线性,反馈回路中的NNS存在唯一的问题,并且由于NN模型通常不可逆转。为了克服这些挑战,我们使用现有的NN分析工具有效地找到了对反射(BP)集的过度评估,即NN控制策略将将系统驱动到给定目标集的状态集。我们介绍了用于计算以馈电NN表示的控制策略的线性和非线性系统的BP过度评估的框架,并提出了计算有效的策略。我们使用各种模型的数值结果来展示所提出的算法,包括6D系统的安全认证。
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
众所周知,深度神经网络(DNNS)通过特别注意某些特定像素来对输入图像进行分类。对每个像素的注意力的图形表示称为显着图。显着图用于检查分类决策基础的有效性,例如,如果DNN对背景而不是图像的主题更加关注,则它不是分类的有效基础。语义扰动可以显着改变显着性图。在这项工作中,我们提出了第一种注意鲁棒性的验证方法,即显着映射对语义扰动的组合的局部稳健性。具体而言,我们的方法确定了扰动参数的范围(例如,亮度变化),该参数维持实际显着性映射变化与预期的显着映射图之间的差异低于给定的阈值。我们的方法基于激活区域遍历,重点是最外面的鲁棒边界,以在较大的DNN上可伸缩。实验结果表明,无论语义扰动如何,我们的方法都可以显示DNN可以与相同基础进行分类的程度,并报告激活区域遍历的性能和性能因素。
translated by 谷歌翻译
Post-hoc explanation methods are used with the intent of providing insights about neural networks and are sometimes said to help engender trust in their outputs. However, popular explanations methods have been found to be fragile to minor perturbations of input features or model parameters. Relying on constraint relaxation techniques from non-convex optimization, we develop a method that upper-bounds the largest change an adversary can make to a gradient-based explanation via bounded manipulation of either the input features or model parameters. By propagating a compact input or parameter set as symbolic intervals through the forwards and backwards computations of the neural network we can formally certify the robustness of gradient-based explanations. Our bounds are differentiable, hence we can incorporate provable explanation robustness into neural network training. Empirically, our method surpasses the robustness provided by previous heuristic approaches. We find that our training method is the only method able to learn neural networks with certificates of explanation robustness across all six datasets tested.
translated by 谷歌翻译
当与分支和界限结合使用时,结合的传播方法是正式验证深神经网络(例如正确性,鲁棒性和安全性)的最有效方法之一。但是,现有作品无法处理在传统求解器中广泛接受的切割平面限制的一般形式,这对于通过凸出凸松弛的加强验证者至关重要。在本文中,我们概括了结合的传播程序,以允许添加任意切割平面的约束,包括涉及放宽整数变量的限制,这些变量未出现在现有的结合传播公式中。我们的广义结合传播方法GCP-crown为应用一般切割平面方法}开辟了一个机会进行神经网络验证,同时受益于结合传播方法的效率和GPU加速。作为案例研究,我们研究了由现成的混合整数编程(MIP)求解器生成的切割平面的使用。我们发现,MIP求解器可以生成高质量的切割平面,以使用我们的新配方来增强基于界限的验证者。由于以分支为重点的绑定传播程序和切削平面的MIP求解器可以使用不同类型的硬件(GPU和CPU)并行运行,因此它们的组合可以迅速探索大量具有强切割平面的分支,从而导致强大的分支验证性能。实验表明,与VNN-Comp 2021中最佳工具相比,我们的方法是第一个可以完全求解椭圆形的基准并验证椭圆21基准的两倍的验证者,并且在oval21基准测试中的最佳工具也明显超过了最先进的验证器。广泛的基准。 GCP-Crown是$ \ alpha $,$ \ beta $ -Crown验证者,VNN-COMP 2022获奖者的一部分。代码可在http://papercode.cc/gcp-crown上获得
translated by 谷歌翻译
基于基于不完整的神经网络验证如冠的绑定传播非常有效,可以显着加速基于神经网络的分支和绑定(BAB)。然而,绑定的传播不能完全处理由昂贵的线性编程(LP)求解器的BAB常规引入的神经元分割限制,导致界限和损伤验证效率。在这项工作中,我们开发了一种基于$ \ beta $ -cra所做的,一种基于新的绑定传播方法,可以通过从原始或双空间构造的可优化参数$ \ beta $完全编码神经元分割。当在中间层中联合优化时,$ \ Beta $ -CROWN通常会产生比具有神经元分裂约束的典型LP验证更好的界限,同时像GPU上的皇冠一样高效且并行化。适用于完全稳健的验证基准,使用BAB的$ \ Beta $ -CROWN比基于LP的BAB方法快三个数量级,并且比所有现有方法更快,同时产生较低的超时率。通过早期终止BAB,我们的方法也可用于有效的不完整验证。与强大的不完整验证者相比,我们始终如一地在许多设置中获得更高的验证准确性,包括基于凸屏障破碎技术的验证技术。与最严重但非常昂贵的Semidefinite编程(SDP)的不完整验证者相比,我们获得了更高的验证精度,验证时间较少三个级。我们的算法授权$ \ alpha,\ \β$ -craft(Alpha-Beta-Crown)验证者,VNN-Comp 2021中的获胜工具。我们的代码可在http://papercode.cc/betacrown提供
translated by 谷歌翻译
使用神经网络学习依赖于可代表功能的复杂性,但更重要的是,典型参数的特定分配与不同复杂度的功能。将激活区域的数量作为复杂性度量,最近的作品表明,深度释放网络的实际复杂性往往远远远非理论最大值。在这项工作中,我们表明这种现象也发生在具有颤扬(多参数)激活功能的网络中,并且在考虑分类任务中的决策边界时。我们还表明参数空间具有多维全维区域,具有广泛不同的复杂性,并在预期的复杂性上获得非竞争下限。最后,我们调查了不同的参数初始化程序,并表明他们可以提高培训的收敛速度。
translated by 谷歌翻译
Fairness of machine learning (ML) software has become a major concern in the recent past. Although recent research on testing and improving fairness have demonstrated impact on real-world software, providing fairness guarantee in practice is still lacking. Certification of ML models is challenging because of the complex decision-making process of the models. In this paper, we proposed Fairify, an SMT-based approach to verify individual fairness property in neural network (NN) models. Individual fairness ensures that any two similar individuals get similar treatment irrespective of their protected attributes e.g., race, sex, age. Verifying this fairness property is hard because of the global checking and non-linear computation nodes in NN. We proposed sound approach to make individual fairness verification tractable for the developers. The key idea is that many neurons in the NN always remain inactive when a smaller part of the input domain is considered. So, Fairify leverages whitebox access to the models in production and then apply formal analysis based pruning. Our approach adopts input partitioning and then prunes the NN for each partition to provide fairness certification or counterexample. We leveraged interval arithmetic and activation heuristic of the neurons to perform the pruning as necessary. We evaluated Fairify on 25 real-world neural networks collected from four different sources, and demonstrated the effectiveness, scalability and performance over baseline and closely related work. Fairify is also configurable based on the domain and size of the NN. Our novel formulation of the problem can answer targeted verification queries with relaxations and counterexamples, which have practical implications.
translated by 谷歌翻译
神经网络(NNS)已成功地用于代表复杂动力学系统的状态演变。这样的模型,称为NN动态模型(NNDMS),使用NN的迭代噪声预测来估计随时间推移系统轨迹的分布。尽管它们的准确性,但对NNDMS的安全分析仍然是一个具有挑战性的问题,并且在很大程度上尚未探索。为了解决这个问题,在本文中,我们介绍了一种为NNDM提供安全保证的方法。我们的方法基于随机屏障函数,其与安全性的关系类似于Lyapunov功能的稳定性。我们首先展示了通过凸优化问题合成NNDMS随机屏障函数的方法,该问题又为系统的安全概率提供了下限。我们方法中的一个关键步骤是,NNS的最新凸近似结果的利用是找到零件线性边界,这允许将屏障函数合成问题作为一个方形优化程序的制定。如果获得的安全概率高于所需的阈值,则该系统将获得认证。否则,我们引入了一种生成控制系统的方法,该系统以最小的侵入性方式稳健地最大化安全概率。我们利用屏障函数的凸属性来提出最佳控制合成问题作为线性程序。实验结果说明了该方法的功效。即,他们表明该方法可以扩展到具有多层和数百个神经元的多维NNDM,并且控制器可以显着提高安全性概率。
translated by 谷歌翻译
To rigorously certify the robustness of neural networks to adversarial perturbations, most state-of-the-art techniques rely on a triangle-shaped linear programming (LP) relaxation of the ReLU activation. While the LP relaxation is exact for a single neuron, recent results suggest that it faces an inherent "convex relaxation barrier" as additional activations are added, and as the attack budget is increased. In this paper, we propose a nonconvex relaxation for the ReLU relaxation, based on a low-rank restriction of a semidefinite programming (SDP) relaxation. We show that the nonconvex relaxation has a similar complexity to the LP relaxation, but enjoys improved tightness that is comparable to the much more expensive SDP relaxation. Despite nonconvexity, we prove that the verification problem satisfies constraint qualification, and therefore a Riemannian staircase approach is guaranteed to compute a near-globally optimal solution in polynomial time. Our experiments provide evidence that our nonconvex relaxation almost completely overcome the "convex relaxation barrier" faced by the LP relaxation.
translated by 谷歌翻译