统计物理学的最新进展显示了机器学习在识别阶段过渡时的显着性能。在本文中,我们基于转移学习施加域对抗性神经网络(DANN),以研究非平衡和平衡相变模型,分别是渗透模型和定向渗透(DP)模型。通过DANN,只需要标记一小部分输入配置(2D图像),以便自动选择,以便捕获临界点。要了解DP模型,该方法通过确定临界点的迭代过程来改进,这是计算临界指数$ \ nu _ {\ perp} $的数据崩溃的先决条件。然后,我们将DANN应用于二维站点的遗传筛选,该配置过滤以仅包括可能包含与订单参数相关的信息的最大群集。两种模型的DANN学习都会产生可靠的结果,它与来自蒙特卡罗模拟的结果相当。我们的研究还表明,与监督学习相比,Dann可以以更低的成本实现相当高的准确性。
translated by 谷歌翻译
相分离在相关电子材料的新功能的出现中起着核心作用。混合相位的结构强烈依赖于非平衡相位分离动态,这迄今为止尚未系统地研究,特别是在理论方面。借助现代机器学习方法,我们展示了Falicov-Kimball模型的第一型大型动力学蒙特卡罗模拟,这是规范强烈相关的电子系统之一。我们发现一个不寻常的相位分离场景,其中域粗化在两个不同的尺度同时发生:棋盘簇的生长在较小的长度尺度和超级集群的扩展,这是相同标志的棋盘集群的聚合,更大规模。我们表明超级集群的出现是由于子分子对称的隐藏动态破裂。被阻止棋盘图案和超集群的生长被示出由相关诱导的自捕集机制产生。类似于本工作中报告的玻璃状行为可能是用于其他相关电子系统的通用。
translated by 谷歌翻译
机器学习最近被出现为研究复杂现象的有希望的方法,其特征是丰富的数据集。特别地,以数据为中心的方法为手动检查可能错过的实验数据集中自动发现结构的可能性。在这里,我们介绍可解释的无监督监督的混合机学习方法,混合相关卷积神经网络(Hybrid-CCNN),并将其应用于使用基于Rydberg Atom阵列的可编程量子模拟器产生的实验数据。具体地,我们应用Hybrid-CCNN以通过可编程相互作用分析在方形格子上的新量子阶段。初始无监督的维度降低和聚类阶段首先揭示了五个不同的量子相位区域。在第二个监督阶段,我们通过培训完全解释的CCNN来细化这些相界并通过训练每个阶段提取相关的相关性。在条纹相中的每个相捕获量子波动中专门识别的特征空间加权和相关的相关性并鉴定两个先前未检测到的相,菱形和边界有序相位。这些观察结果表明,具有机器学习的可编程量子模拟器的组合可用作有关相关量子态的详细探索的强大工具。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
模式形成过程中拓扑和微观结构方案中过渡的识别和分类对于理解和制造许多应用领域中的微观结构精确的新型材料至关重要。不幸的是,相关的微观结构过渡可能取决于以微妙而复杂的方式取决于过程参数,而经典相变理论未捕获。尽管有监督的机器学习方法可能对识别过渡制度很有用,但他们需要标签,这些标签需要先验了解订单参数或描述这些过渡的相关结构。由动态系统的通用原理的激励,我们使用一种自我监督的方法来解决使用神经网络从观察到的微观结构中预测过程参数的反问题。这种方法不需要关于不同类别的微观结构模式或预测微观结构过渡的目标任务的预定义的,标记的数据。我们表明,执行逆问题预测任务的困难与发现微观结构制度的目标有关,因为微观结构模式的定性变化与我们自我监督问题的不确定性预测的变化相对应。我们通过在两个不同的模式形成过程中自动发现微观结构方案中的过渡来证明我们的方法的价值:两相混合物的旋律分解以及在薄膜物理蒸气沉积过程中二进制合金浓度调制的形成。这种方法为发现和理解看不见的或难以辨认的过渡制度开辟了一个有希望的途径,并最终用于控制复杂的模式形成过程。
translated by 谷歌翻译
本文通过研究阶段转换的$ Q $State Potts模型,通过许多无监督的机器学习技术,即主成分分析(PCA),$ K $ - 梅尔集群,统一歧管近似和投影(UMAP),和拓扑数据分析(TDA)。即使在所有情况下,我们都能够检索正确的临界温度$ t_c(q)$,以$ q = 3,4 $和5 $,结果表明,作为UMAP和TDA的非线性方法依赖于有限尺寸效果,同时仍然能够区分第一和二阶相转换。该研究可以被认为是在研究相转变的调查中使用不同无监督的机器学习算法的基准。
translated by 谷歌翻译
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains.The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages.We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
translated by 谷歌翻译
在一系列软物质系统中广泛观察到玻璃过渡。但是,尽管有多年的研究,这些转变的物理机制仍然未知。特别是,一个重要的未解决的问题是玻璃转变是否伴随着特征静态结构的相关长度的分歧。最近,提出了一种可以从纯精度的纯静态信息中预测长期动态的方法。但是,即使是这种方法也不通用,并且对于KOB(Andersen系统)而言,这是典型的玻璃形成液体模型。在这项研究中,我们开发了一种使用机器学习或尤其是卷积神经网络提取眼镜的特征结构的方法。特别是,我们通过量化网络做出的决策的理由来提取特征结构。我们考虑了两个质量不同的玻璃形成二进制系统,并通过与几个既定结构指标进行比较,我们证明我们的系统可以识别依赖于系统细节的特征结构。令人惊讶的是,提取的结构与热波动中的非平衡衰老动力学密切相关。
translated by 谷歌翻译
最近的智能故障诊断(IFD)的进展大大依赖于深度代表学习和大量标记数据。然而,机器通常以各种工作条件操作,或者目标任务具有不同的分布,其中包含用于训练的收集数据(域移位问题)。此外,目标域中的新收集的测试数据通常是未标记的,导致基于无监督的深度转移学习(基于UDTL为基础的)IFD问题。虽然它已经实现了巨大的发展,但标准和开放的源代码框架以及基于UDTL的IFD的比较研究尚未建立。在本文中,我们根据不同的任务,构建新的分类系统并对基于UDTL的IFD进行全面审查。对一些典型方法和数据集的比较分析显示了基于UDTL的IFD中的一些开放和基本问题,这很少研究,包括特征,骨干,负转移,物理前导等的可转移性,强调UDTL的重要性和再现性 - 基于IFD,整个测试框架将发布给研究界以促进未来的研究。总之,发布的框架和比较研究可以作为扩展界面和基本结果,以便对基于UDTL的IFD进行新的研究。代码框架可用于\ url {https:/github.com/zhaozhibin/udtl}。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
We apply the Hierarchical Autoregressive Neural (HAN) network sampling algorithm to the two-dimensional $Q$-state Potts model and perform simulations around the phase transition at $Q=12$. We quantify the performance of the approach in the vicinity of the first-order phase transition and compare it with that of the Wolff cluster algorithm. We find a significant improvement as far as the statistical uncertainty is concerned at a similar numerical effort. In order to efficiently train large neural networks we introduce the technique of pre-training. It allows to train some neural networks using smaller system sizes and then employing them as starting configurations for larger system sizes. This is possible due to the recursive construction of our hierarchical approach. Our results serve as a demonstration of the performance of the hierarchical approach for systems exhibiting bimodal distributions. Additionally, we provide estimates of the free energy and entropy in the vicinity of the phase transition with statistical uncertainties of the order of $10^{-7}$ for the former and $10^{-3}$ for the latter based on a statistics of $10^6$ configurations.
translated by 谷歌翻译
随着深度学习技术的快速发展和计算能力的提高,深度学习已广泛应用于高光谱图像(HSI)分类领域。通常,深度学习模型通常包含许多可训练参数,并且需要大量标记的样品来实现最佳性能。然而,关于HSI分类,由于手动标记的难度和耗时的性质,大量标记的样本通常难以获取。因此,许多研究工作侧重于建立一个少数标记样本的HSI分类的深层学习模型。在本文中,我们专注于这一主题,并对相关文献提供系统审查。具体而言,本文的贡献是双重的。首先,相关方法的研究进展根据学习范式分类,包括转移学习,积极学习和少量学习。其次,已经进行了许多具有各种最先进的方法的实验,总结了结果以揭示潜在的研究方向。更重要的是,虽然深度学习模型(通常需要足够的标记样本)和具有少量标记样本的HSI场景之间存在巨大差距,但是通过深度学习融合,可以很好地表征小样本集的问题方法和相关技术,如转移学习和轻量级模型。为了再现性,可以在HTTPS://github.com/shuguoj/hsi-classification中找到纸张中评估的方法的源代码.git。
translated by 谷歌翻译
域适应性是现代机器学习中的一种流行范式,旨在解决培训或验证数据集之间具有用于学习和测试分类器(源域)和潜在的大型未标记数据集的培训或验证数据集之间的分歧问题,其中利用了模型(目标域)(目标域)(目标域) 。任务是找到源数据集的源和目标数据集的这种常见表示,其中源数据集提供了培训的信息,因此可以最大程度地减少来源和目标之间的差异。目前,最流行的领域适应性解决方案是基于训练神经网络,这些神经网络结合了分类和对抗性学习模块,这些模块是饥饿的,通常很难训练。我们提出了一种称为域适应性主成分分析(DAPCA)的方法,该方法发现线性减少的数据表示有助于解决域适应任务。 DAPCA基于数据点对之间引入正权重,并概括了主成分分析的监督扩展。 DAPCA代表一种迭代算法,因此在每次迭代中都解决了一个简单的二次优化问题。保证算法的收敛性,并且在实践中的迭代次数很少。我们验证了先前提出的用于解决域适应任务的基准的建议算法,还显示了在生物医学应用中对单细胞法数据集进行分析中使用DAPCA的好处。总体而言,考虑到源域和目标域之间可能的差异,DAPCA可以作为许多机器学习应用程序中有用的预处理步骤。
translated by 谷歌翻译
渗透是气候,物理,材料科学,流行病学,金融等重要主题。用机器学习方法预测渗透阈值仍然具有挑战性。在本文中,我们构建了一个强大的图形卷积神经网络,以监督和无监督的方式研究渗透。从监督的学习角度,图形卷积神经网络同时并正确训练不同晶格类型的数据,例如正方形和三角形晶格。对于无监督的视角,将图形卷积神经网络和混乱方法结合在一起,可以通过“ W”形性能获得渗透阈值。这项工作的发现打开了建立一个更通用的框架的可能性,该框架可以探究与渗透相关的现象。
translated by 谷歌翻译
我们提供了对神经马尔可夫链蒙特卡罗模拟中的自相关的深度研究,该版本的传统大都会算法采用神经网络来提供独立的建议。我们使用二维ising模型说明了我们的想法。我们提出了几次自相关时间的估算,其中一些灵感来自于为大都市独立采样器导出的分析结果,我们将其与逆温度$ \ Beta $的函数进行比较和研究。基于我们提出替代损失功能,并研究其对自动系列的影响。此外,我们调查对自动相关时间的神经网络培训过程中强加系统对称($ Z_2 $和/或翻译)的影响。最终,我们提出了一种包含局部热浴更新的方案。讨论了上述增强功能的影响为16美元16美元旋转系统。我们的调查结果摘要可以作为实施更复杂模型的神经马尔可夫链蒙特卡罗模拟的指导。
translated by 谷歌翻译
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey paper reviews more than forty representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
translated by 谷歌翻译
无监督的域适应(UDA)显示出近年来工作条件下的轴承故障诊断的显着结果。但是,大多数UDA方法都不考虑数据的几何结构。此外,通常应用全局域适应技术,这忽略了子域之间的关系。本文通过呈现新的深亚域适应图卷积神经网络(DSAGCN)来解决提到的挑战,具有两个关键特性:首先,采用图形卷积神经网络(GCNN)来模拟数据结构。二,对抗域适应和局部最大平均差异(LMMD)方法同时应用,以对准子域的分布并降低相关子域和全局域之间的结构差异。 CWRU和Paderborn轴承数据集用于验证DSAGCN方法的比较模型之间的效率和优越性。实验结果表明,将结构化子域与域适应方法对准,以获得无监督故障诊断的准确数据驱动模型。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
近年来,手性磁铁吸引了大量的研究兴趣,因为它们支持了各种拓扑缺陷,例如天空和bimerons,并通过多种技术允许其观察和操纵。它们在Spintronics领域也具有广泛的应用,尤其是在开发用于存储存储设备的新技术方面。但是,这些实验和理论研究中产生的大量数据需要足够的工具,其中机器学习至关重要。我们使用卷积神经网络(CNN)来识别手性磁铁热力学阶段中的相关特征,包括(抗)天际,bimeron,以及螺旋和铁磁状态。我们使用灵活的多标签分类框架,该框架可以正确分类,其中混合了不同的特征和相位。然后,我们训练CNN从晶格蒙特卡洛模拟的中间状态的快照中预测最终状态的特征。训练有素的模型允许在编队过程中可靠地识别不同阶段。因此,CNN可以显着加快3D材料的大规模模拟,这些模拟迄今为止一直是定量研究的瓶颈。此外,这种方法可以应用于手性磁体的现实世界图像中混合状态和新兴特征的识别。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译