随着无人机的使用随着成本降低和改善的无人机技术而增加,无人机检测作为一个重要的对象检测任务。然而,在不利的条件下检测远处无人机,即弱对比度,远程,低可视性,需要有效的算法。我们的方法通过使用基于卡尔曼的对象跟踪器微调使用基于Kalman的对象跟踪器来提高yolov5模型来通过微调yolov5模型来接近无人机检测问题,以提高检测信心。我们的结果表明,通过最佳的合成数据子集增强真实数据可以提高性能。此外,由对象跟踪方法收集的时间信息可以进一步提高性能。
translated by 谷歌翻译
由于无人机成本降低并且无人机技术有所改善,无人机检测已成为对象检测的重要任务。但是,当对比度较弱,远距离可见度较弱时,很难检测到遥远的无人机。在这项工作中,我们提出了几个序列分类体系结构,以减少无人机轨道检测到的假阳性比率。此外,我们提出了一个新的无人机与鸟类序列分类数据集,以训练和评估拟议的架构。3D CNN,LSTM和基于变压器的序列分类体系结构已在拟议的数据集上进行了培训,以显示提出的思想的有效性。如实验所示,使用序列信息,鸟类分类和整体F1分数可以分别提高73%和35%。在所有序列分类模型中,基于R(2+1)D的完全卷积模型可产生最佳的转移学习和微调结果。
translated by 谷歌翻译
宽阔的区域运动图像(瓦米)产生具有大量极小物体的高分辨率图像。目标物体在连续帧中具有大的空间位移。令人讨厌的图像的这种性质使对象跟踪和检测具有挑战性。在本文中,我们介绍了我们基于深度神经网络的组合对象检测和跟踪模型,即热图网络(HM-Net)。 HM-Net明显快于最先进的帧差异和基于背景减法的方法,而不会影响检测和跟踪性能。 HM-Net遵循基于对象的联合检测和跟踪范式。简单的热图的预测支持无限数量的同时检测。所提出的方法使用来自前一帧的两个连续帧和物体检测热图作为输入,这有助于帧之间的HM-Net监视器时空变化并跟踪先前预测的对象。尽管重复使用先前的物体检测热图作为基于生命的反馈的存储器元件,但它可能导致假阳性检测的意外浪涌。为了增加对误报和消除低置信度检测的方法的稳健性,HM-Net采用新的反馈滤波器和高级数据增强。 HM-Net优于最先进的WAMI移动对象检测和跟踪WPAFB数据集的跟踪方法,其96.2%F1和94.4%地图检测分数,同时在同一数据集上实现61.8%的地图跟踪分数。这种性能对应于F1,6.1%的地图分数的增长率为2.1%,而在追踪最先进的地图分数的地图分数为9.5%。
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
在现场遥远的小物体和物体的检测是监视应用中的一个重大挑战。此类对象由图像中的少量像素表示,并且缺乏足够的细节,因此很难使用常规检测器检测到它们。在这项工作中,提出了一个称为切片辅助超推理(SAHI)的开源框架,该框架提供了一种通用切片的辅助推理和用于小对象检测的微调管道。提出的技术是通用的,因为它可以在任何可用的对象检测器之上应用于而无需任何微调。实验评估,使用对象检测基线在Visdrone和Xview Aerial对象检测数据集上表明,FCO,VFNET和TOOD检测器分别将对象检测方法分别增加6.8%,5.1%和5.3%。此外,通过切片辅助微调可以进一步提高检测准确性,从而导致累计增加12.7%,13.4%和14.5%的AP按照相同的顺序。拟议的技术已与DestectRon2,MMDetection和Yolov5模型集成在一起,并在https://github.com/obss/sahi.git上公开获得。
translated by 谷歌翻译
现在,诸如无人机之类的无人机,从捕获和目标检测的各种目的中,从Ariel Imagery等捕获和目标检测的各种目的很大使用。轻松进入这些小的Ariel车辆到公众可能导致严重的安全威胁。例如,可以通过使用无人机在公共公共场合中混合的间谍来监视关键位置。在手中研究提出了一种改进和高效的深度学习自治系统,可以以极大的精度检测和跟踪非常小的无人机。建议的系统由自定义深度学习模型Tiny Yolov3组成,其中一个非常快速的物体检测模型的口味之一,您只能构建并用于检测一次(YOLO)。物体检测算法将有效地检测无人机。与以前的Yolo版本相比,拟议的架构表现出显着更好的性能。在资源使用和时间复杂性方面观察到改进。使用召回和精度分别为93%和91%的测量来测量性能。
translated by 谷歌翻译
由于卷积神经网络(CNN)在过去的十年中检测成功,多对象跟踪(MOT)通过检测方法的使用来控制。随着数据集和基础标记网站的发布,研究方向已转向在跟踪时在包括重新识别对象的通用场景(包括重新识别(REID))上的最佳准确性。在这项研究中,我们通过提供专用的行人数据集并专注于对性能良好的多对象跟踪器的深入分析来缩小监视的范围)现实世界应用的技术。为此,我们介绍SOMPT22数据集;一套新的,用于多人跟踪的新套装,带有带注释的简短视频,该视频从位于杆子上的静态摄像头捕获,高度为6-8米,用于城市监视。与公共MOT数据集相比,这提供了室外监视的MOT的更为集中和具体的基准。我们分析了该新数据集上检测和REID网络的使用方式,分析了将MOT跟踪器分类为单发和两阶段。我们新数据集的实验结果表明,SOTA远非高效率,而单一跟踪器是统一快速执行和准确性的良好候选者,并具有竞争性的性能。该数据集将在以下网址提供:sompt22.github.io
translated by 谷歌翻译
由于其前所未有的优势,在规模,移动,部署和隐蔽观察能力方面,空中平台和成像传感器的快速出现是实现新的空中监测形式。本文从计算机视觉和模式识别的角度来看,全面概述了以人为本的空中监控任务。它旨在为读者提供使用无人机,无人机和其他空中平台的空中监测任务当前状态的深入系统审查和技术分析。感兴趣的主要对象是人类,其中要检测单个或多个受试者,识别,跟踪,重新识别并进行其行为。更具体地,对于这四项任务中的每一个,我们首先讨论与基于地面的设置相比在空中环境中执行这些任务的独特挑战。然后,我们审查和分析公共可用于每项任务的航空数据集,并深入了解航空文学中的方法,并调查他们目前如何应对鸟瞰挑战。我们在讨论缺失差距和开放研究问题的讨论中得出结论,告知未来的研究途径。
translated by 谷歌翻译
Unmanned air vehicles (UAVs) popularity is on the rise as it enables the services like traffic monitoring, emergency communications, deliveries, and surveillance. However, the unauthorized usage of UAVs (a.k.a drone) may violate security and privacy protocols for security-sensitive national and international institutions. The presented challenges require fast, efficient, and precise detection of UAVs irrespective of harsh weather conditions, the presence of different objects, and their size to enable SafeSpace. Recently, there has been significant progress in using the latest deep learning models, but those models have shortcomings in terms of computational complexity, precision, and non-scalability. To overcome these limitations, we propose a precise and efficient multiscale and multifeature UAV detection network for SafeSpace, i.e., \textit{MultiFeatureNet} (\textit{MFNet}), an improved version of the popular object detection algorithm YOLOv5s. In \textit{MFNet}, we perform multiple changes in the backbone and neck of the YOLOv5s network to focus on the various small and ignored features required for accurate and fast UAV detection. To further improve the accuracy and focus on the specific situation and multiscale UAVs, we classify the \textit{MFNet} into small (S), medium (M), and large (L): these are the combinations of various size filters in the convolution and the bottleneckCSP layers, reside in the backbone and neck of the architecture. This classification helps to overcome the computational cost by training the model on a specific feature map rather than all the features. The dataset and code are available as an open source: github.com/ZeeshanKaleem/MultiFeatureNet.
translated by 谷歌翻译
Object detection models commonly deployed on uncrewed aerial systems (UAS) focus on identifying objects in the visible spectrum using Red-Green-Blue (RGB) imagery. However, there is growing interest in fusing RGB with thermal long wave infrared (LWIR) images to increase the performance of object detection machine learning (ML) models. Currently LWIR ML models have received less research attention, especially for both ground- and air-based platforms, leading to a lack of baseline performance metrics evaluating LWIR, RGB and LWIR-RGB fused object detection models. Therefore, this research contributes such quantitative metrics to the literature .The results found that the ground-based blended RGB-LWIR model exhibited superior performance compared to the RGB or LWIR approaches, achieving a mAP of 98.4%. Additionally, the blended RGB-LWIR model was also the only object detection model to work in both day and night conditions, providing superior operational capabilities. This research additionally contributes a novel labelled training dataset of 12,600 images for RGB, LWIR, and RGB-LWIR fused imagery, collected from ground-based and air-based platforms, enabling further multispectral machine-driven object detection research.
translated by 谷歌翻译
自动检测飞行无人机是一个关键问题,其存在(特别是未经授权)可以造成风险的情况或损害安全性。在这里,我们设计和评估了多传感器无人机检测系统。结合常见的摄像机和麦克风传感器,我们探索了热红外摄像机的使用,指出是一种可行且有希望的解决方案,在相关文献中几乎没有解决。我们的解决方案还集成了鱼眼相机,以监视天空的更大部分,并将其他摄像机转向感兴趣的对象。传感溶液与ADS-B接收器,GPS接收器和雷达模块相辅相成,尽管由于其有限的检测范围,后者未包含在我们的最终部署中。即使此处使用的摄像机的分辨率较低,热摄像机也被证明是与摄像机一样好的可行解决方案。我们作品的另外两个新颖性是创建一个新的公共数据集的多传感器注释数据,该数据与现有的类别相比扩大了类的数量,以及对探测器性能的研究作为传感器到传感器的函数的研究目标距离。还探索了传感器融合,表明可以以这种方式使系统更强大,从而减轻对单个传感器的虚假检测
translated by 谷歌翻译
我们的目标是使用多个摄像机和计算机愿望来检测和识别多个对象,以及用于灾难响应无人机的计算机视觉。主要挑战是驯服检测错误,解决ID切换和碎片,适应多尺度特征和具有全局摄像机运动的多种视图。提出了两种简单的方法来解决这些问题。一个是一个快速的多摄像机系统,该系统添加了katchlet关联,另一个是结合高性能检测器和跟踪器来解决限制。 (...)与验证数据集中的基线(85.44%)相比,我们的第一种方法(85.71%)的准确性略有改善。在基于L2-NOR误差计算的最终结果中,基线为48.1,而拟议的模型组合为34.9,其误差减少为27.4%。在第二种方法中,虽然Deepsort仅通过硬件和时间限制来处理四分之一的帧,但我们的模型与Deepsort(42.9%)以召回的召回方式优于Fairmot(71.4%)。我们的两种模型分别在2020年和2021年的韩国科学和ICT组织的“AI Grand Challenge”中排名第二和第三位。源代码在这些URL上公开可用(Github.com/mlvlab/drone_ai_challenge,github.com/mlvlab/drone_task1,github.com/mlvlab/rony2_task3,github.com/mlvlab/drone_task4)。
translated by 谷歌翻译
Technological advancements have normalized the usage of unmanned aerial vehicles (UAVs) in every sector, spanning from military to commercial but they also pose serious security concerns due to their enhanced functionalities and easy access to private and highly secured areas. Several instances related to UAVs have raised security concerns, leading to UAV detection research studies. Visual techniques are widely adopted for UAV detection, but they perform poorly at night, in complex backgrounds, and in adverse weather conditions. Therefore, a robust night vision-based drone detection system is required to that could efficiently tackle this problem. Infrared cameras are increasingly used for nighttime surveillance due to their wide applications in night vision equipment. This paper uses a deep learning-based TinyFeatureNet (TF-Net), which is an improved version of YOLOv5s, to accurately detect UAVs during the night using infrared (IR) images. In the proposed TF-Net, we introduce architectural changes in the neck and backbone of the YOLOv5s. We also simulated four different YOLOv5 models (s,m,n,l) and proposed TF-Net for a fair comparison. The results showed better performance for the proposed TF-Net in terms of precision, IoU, GFLOPS, model size, and FPS compared to the YOLOv5s. TF-Net yielded the best results with 95.7\% precision, 84\% mAp, and 44.8\% $IoU$.
translated by 谷歌翻译
Insects as pollinators play a key role in ecosystem management and world food production. However, insect populations are declining, calling for a necessary global demand of insect monitoring. Existing methods analyze video or time-lapse images of insects in nature, but the analysis is challenging since insects are small objects in complex and dynamic scenes of natural vegetation. The current paper provides a dataset of primary honeybees visiting three different plant species during two months of summer-period. The dataset consists of more than 700,000 time-lapse images from multiple cameras, including more than 100,000 annotated images. The paper presents a new method pipeline for detecting insects in time-lapse RGB-images. The pipeline consists of a two-step process. Firstly, the time-lapse RGB-images are preprocessed to enhance insects in the images. We propose a new prepossessing enhancement method: Motion-Informed-enhancement. The technique uses motion and colors to enhance insects in images. The enhanced images are subsequently fed into a Convolutional Neural network (CNN) object detector. Motion-Informed-enhancement improves the deep learning object detectors You Only Look Once (YOLO) and Faster Region-based Convolutional Neural Networks (Faster R-CNN). Using Motion-Informed-enhancement the YOLO-detector improves average micro F1-score from 0.49 to 0.71, and the Faster R-CNN-detector improves average micro F1-score from 0.32 to 0.56 on the our dataset. Our datasets are published on: https://vision.eng.au.dk/mie/
translated by 谷歌翻译
最近的多目标跟踪(MOT)系统利用高精度的对象探测器;然而,培训这种探测器需要大量标记的数据。虽然这种数据广泛适用于人类和车辆,但其他动物物种显着稀缺。我们目前稳健的置信跟踪(RCT),一种算法,旨在保持鲁棒性能,即使检测质量差。与丢弃检测置信信息的先前方法相比,RCT采用基本上不同的方法,依赖于精确的检测置信度值来初始化曲目,扩展轨道和滤波器轨道。特别地,RCT能够通过有效地使用低置信度检测(以及单个物体跟踪器)来最小化身份切换,以保持对象的连续轨道。为了评估在存在不可靠的检测中的跟踪器,我们提出了一个挑战的现实世界水下鱼跟踪数据集,Fishtrac。在对FISHTRAC以及UA-DETRAC数据集的评估中,我们发现RCT在提供不完美的检测时优于其他算法,包括最先进的深单和多目标跟踪器以及更经典的方法。具体而言,RCT具有跨越方法的最佳平均热量,可以成功返回所有序列的结果,并且具有比其他方法更少的身份交换机。
translated by 谷歌翻译
Event-based vision has been rapidly growing in recent years justified by the unique characteristics it presents such as its high temporal resolutions (~1us), high dynamic range (>120dB), and output latency of only a few microseconds. This work further explores a hybrid, multi-modal, approach for object detection and tracking that leverages state-of-the-art frame-based detectors complemented by hand-crafted event-based methods to improve the overall tracking performance with minimal computational overhead. The methods presented include event-based bounding box (BB) refinement that improves the precision of the resulting BBs, as well as a continuous event-based object detection method, to recover missed detections and generate inter-frame detections that enable a high-temporal-resolution tracking output. The advantages of these methods are quantitatively verified by an ablation study using the higher order tracking accuracy (HOTA) metric. Results show significant performance gains resembled by an improvement in the HOTA from 56.6%, using only frames, to 64.1% and 64.9%, for the event and edge-based mask configurations combined with the two methods proposed, at the baseline framerate of 24Hz. Likewise, incorporating these methods with the same configurations has improved HOTA from 52.5% to 63.1%, and from 51.3% to 60.2% at the high-temporal-resolution tracking rate of 384Hz. Finally, a validation experiment is conducted to analyze the real-world single-object tracking performance using high-speed LiDAR. Empirical evidence shows that our approaches provide significant advantages compared to using frame-based object detectors at the baseline framerate of 24Hz and higher tracking rates of up to 500Hz.
translated by 谷歌翻译
每年,AEDESAEGYPTI蚊子都感染了数百万人,如登录,ZIKA,Chikungunya和城市黄热病等疾病。战斗这些疾病的主要形式是通过寻找和消除潜在的蚊虫养殖场来避免蚊子繁殖。在这项工作中,我们介绍了一个全面的空中视频数据集,获得了无人驾驶飞行器,含有可能的蚊帐。使用识别所有感兴趣对象的边界框手动注释视频数据集的所有帧。该数据集被用于开发基于深度卷积网络的这些对象的自动检测系统。我们提出了通过在可以注册检测到的对象的时空检测管道的对象检测流水线中的融合来利用视频中包含的时间信息,这些时间是可以注册检测到的对象的,最大限度地减少最伪正和假阴性的出现。此外,我们通过实验表明使用视频比仅使用框架对马赛克组成马赛克更有利。使用Reset-50-FPN作为骨干,我们可以分别实现0.65和0.77的F $ _1 $ -70分别对“轮胎”和“水箱”的对象级别检测,说明了正确定位潜在蚊子的系统能力育种对象。
translated by 谷歌翻译
最近发布的EGO4D数据集和基准测试显着缩放,并使第一人称视觉感知数据多样化。在EGO4D中,视觉查询2D本地化任务旨在从第一人称视图中的录制中检索过去出现的对象。此任务需要一个系统才能在空间和时间上定位给定对象查询的最新外观,其中查询在不同场景中被对象的单个紧密视觉作物注册。我们的研究基于情节记忆基准中引入的三阶段基线。基线通过检测和跟踪解决问题:检测所有帧中的相似对象,然后从最自信的检测结果中运行跟踪器。在VQ2D挑战中,我们确定了当前基线的两个局限性。 (1)训练配置具有冗余计算。尽管培训集有数百万个实例,但其中大多数是重复的,唯一对象的数量仅为14.6k。相同对象的重复梯度计算导致效率低下的训练; (2)背景框架上的误报率很高。这是由于培训和评估之间的分布差距。在培训期间,该模型只能看到干净,稳定和标记的框架,但是以自我为中心的视频也具有嘈杂,模糊或未标记的背景框架。为此,我们开发了一个更有效的解决方案。具体来说,我们将训练环从约15天提高到不到24小时,并且达到了0.17%的空间AP,比基线高31%。我们的解决方案在公共排行榜上获得了第一个排名。我们的代码可在https://github.com/facebookresearch/vq2d_cvpr上公开获取。
translated by 谷歌翻译
One of the biggest challenges in machine learning is data collection. Training data is an important part since it determines how the model will behave. In object classification, capturing a large number of images per object and in different conditions is not always possible and can be very time-consuming and tedious. Accordingly, this work explores the creation of artificial images using a game engine to cope with limited data in the training dataset. We combine real and synthetic data to train the object classification engine, a strategy that has shown to be beneficial to increase confidence in the decisions made by the classifier, which is often critical in industrial setups. To combine real and synthetic data, we first train the classifier on a massive amount of synthetic data, and then we fine-tune it on real images. Another important result is that the amount of real images needed for fine-tuning is not very high, reaching top accuracy with just 12 or 24 images per class. This substantially reduces the requirements of capturing a great amount of real data.
translated by 谷歌翻译
获取数据以培训基于深入的学习的对象探测器(无人机)昂贵,耗时,甚至可以在特定环境中禁止。另一方面,合成数据快速且便宜。在这项工作中,我们探讨了在各种应用环境中从UVS探讨了对象检测中的合成数据。为此,我们将开源框架DeepGtav扩展到UAV方案的工作。我们在多个域中捕获各种大规模的高分辨率合成数据集,以通过分析多种型号的多种培训策略来展示它们在真实对象检测中的使用。此外,我们分析了几种不同的数据生成和采样参数,以提供可操作的工程建议,以获得进一步的科学研究。DeepGTAV框架可在https://git.io/jyf5j提供。
translated by 谷歌翻译