用于图形分类的分布外检测的问题远未解决。现有模型往往对OOD示例过高自信,或者完全忽略检测任务。在这项工作中,我们从不确定性估计的角度考虑了这个问题,并进行了几种最近提出的方法的比较。在我们的实验中,我们发现没有通用的OOD检测方法,并且重要的是考虑图表和预测分类分布。
translated by 谷歌翻译
我们研究了与任何已经训练的分类器兼容的简单方法(OOD)图像检测,仅依靠其预测或学会的表示。当使用Resnet-50和Swin Transformer模型使用时,评估各种方法的OOD检测性能,我们找到了仅考虑学会表示的模型预测的方法,可以轻松地胜过模型的预测。基于我们的分析,我们主张在其他研究中忽略了一种死去的方法:仅作为OOD图像标记,其平均距离与他们最近的邻居的平均距离很大(在图像分类器的表示空间中,经过训练的图像分类器的空间分销数据)。
translated by 谷歌翻译
室外(OOD)检测是面向任务的对话框系统中的关键组件,旨在确定查询是否不在预定义的支持的意图集之外。事实证明,先前基于软磁性的检测算法对OOD样品被过度自信。在本文中,我们分析了过度自信的OOD来自由于训练和测试分布之间的不匹配而导致的分布不确定性,这使得该模型无法自信地做出预测,因此可能导致异常软磁得分。我们提出了一个贝叶斯OOD检测框架,以使用Monte-Carlo辍学来校准分布不确定性。我们的方法是灵活的,并且可以轻松地插入现有的基于软磁性的基线和增益33.33 \%OOD F1改进,而与MSP相比仅增加了0.41 \%的推理时间。进一步的分析表明,贝叶斯学习对OOD检测的有效性。
translated by 谷歌翻译
检测到分布(OOD)数据的能力在深度学习的安全至关重要的应用中很重要。目的是使用从深神经网络中提取的不确定性量度分离训练分布中的分布(ID)数据。深层合奏是一种公认​​的方法,可以提高深神经网络产生的不确定性估计的质量,并且与单个模型相比,已证明具有优异的OOD检测性能。文献中现有的直觉是,深层预测的多样性表明分布转移,因此应使用多样性(MI)等多样性的衡量标准进行OOD检测。我们通过实验表明,与某些OOD数据集中的单模熵相比,使用MI导致MI导致95%fpr@95较差30-40%。我们建议对Deep Sembles更好的OOD检测性能的替代解释 - OOD检测是二元分类,我们正在分类分类器。因此,我们表明,通过平均特定于任务的检测分数,例如整体上的能量,可以实现更深入的合奏。
translated by 谷歌翻译
最近,深度学习中的不确定性估计已成为提高安全至关重要应用的可靠性和鲁棒性的关键领域。尽管有许多提出的方法要么关注距离感知模型的不确定性,要么是分布式检测的不确定性,要么是针对分布校准的输入依赖性标签不确定性,但这两种类型的不确定性通常都是必要的。在这项工作中,我们提出了用于共同建模模型和数据不确定性的HETSNGP方法。我们表明,我们提出的模型在这两种类型的不确定性之间提供了有利的组合,因此在包括CIFAR-100C,ImagEnet-C和Imagenet-A在内的一些具有挑战性的分发数据集上优于基线方法。此外,我们提出了HETSNGP Ensemble,这是我们方法的结合版本,该版本还对网络参数的不确定性进行建模,并优于其他集合基线。
translated by 谷歌翻译
分布(OOD)检测是在开放世界中部署机器学习模型的关键任务。基于距离的方法已经证明了有望,如果测试样品离分布(ID)数据相对遥远,则将测试样品视为OOD。但是,先前的方法对基础特征空间施加了强有力的分布假设,这可能并不总是存在。在本文中,我们探讨了非参数最近邻居距离的疗效,以检测OOD,这在文献中很大程度上被忽略了。与先前的工作不同,我们的方法不会施加任何分布假设,因此提供了更强的灵活性和一般性。我们证明了在几个基准测试中基于邻元的OOD检测的有效性,并建立了卓越的性能。在对Imagenet-1K训练的同一模型下,我们的方法将假阳性率(FPR@tpr95)降低了24.77%,与强大的基线SSD+相比,使用参数方法Mahalanobis在检测中。可用代码:https://github.com/deeplearning-wisc/knn-ood。
translated by 谷歌翻译
Safety-critical applications like autonomous driving use Deep Neural Networks (DNNs) for object detection and segmentation. The DNNs fail to predict when they observe an Out-of-Distribution (OOD) input leading to catastrophic consequences. Existing OOD detection methods were extensively studied for image inputs but have not been explored much for LiDAR inputs. So in this study, we proposed two datasets for benchmarking OOD detection in 3D semantic segmentation. We used Maximum Softmax Probability and Entropy scores generated using Deep Ensembles and Flipout versions of RandLA-Net as OOD scores. We observed that Deep Ensembles out perform Flipout model in OOD detection with greater AUROC scores for both datasets.
translated by 谷歌翻译
本文我们的目标是利用异质的温度缩放作为校准策略(OOD)检测。此处的异质性是指每个样品的最佳温度参数可能不同,而不是传统的方法对整个分布使用相同的值。为了实现这一目标,我们提出了一种称为锚定的新培训策略,可以估算每个样品的适当温度值,从而导致几个基准的最新OOD检测性能。使用NTK理论,我们表明该温度函数估计与分类器的认知不确定性紧密相关,这解释了其行为。与某些表现最佳的OOD检测方法相反,我们的方法不需要暴露于其他离群数据集,自定义校准目标或模型结合。通过具有不同OOD检测设置的经验研究 - 远处,OOD附近和语义相干OOD - 我们建立了一种高效的OOD检测方法。可以在此处访问代码和模型-https://github.com/rushilanirudh/amp
translated by 谷歌翻译
检测到分布(OOD)数据是一项任务,它正在接受计算机视觉的深度学习领域越来越多的研究注意力。但是,通常在隔离任务上评估检测方法的性能,而不是考虑串联中的潜在下游任务。在这项工作中,我们检查了存在OOD数据(SCOD)的选择性分类。也就是说,检测OOD样本的动机是拒绝它们,以便降低它们对预测质量的影响。我们在此任务规范下表明,与仅在OOD检测时进行评估时,现有的事后方法的性能大不相同。这是因为如果ID数据被错误分类,将分布分配(ID)数据与OOD数据混合在一起的问题不再是一个问题。但是,正确和不正确的预测的ID数据中的汇合变得不受欢迎。我们还提出了一种新颖的SCOD,SoftMax信息保留(SIRC)的方法,该方法通过功能不足信息来增强基于软疗法的置信度得分,以便在不牺牲正确和错误的ID预测之间的分离的情况下,可以提高其识别OOD样品的能力。在各种成像网尺度数据集和卷积神经网络体系结构上进行的实验表明,SIRC能够始终如一地匹配或胜过SCOD的基线,而现有的OOD检测方法则无法做到。
translated by 谷歌翻译
Estimating how uncertain an AI system is in its predictions is important to improve the safety of such systems. Uncertainty in predictive can result from uncertainty in model parameters, irreducible data uncertainty and uncertainty due to distributional mismatch between the test and training data distributions. Different actions might be taken depending on the source of the uncertainty so it is important to be able to distinguish between them. Recently, baseline tasks and metrics have been defined and several practical methods to estimate uncertainty developed. These methods, however, attempt to model uncertainty due to distributional mismatch either implicitly through model uncertainty or as data uncertainty. This work proposes a new framework for modeling predictive uncertainty called Prior Networks (PNs) which explicitly models distributional uncertainty. PNs do this by parameterizing a prior distribution over predictive distributions. This work focuses on uncertainty for classification and evaluates PNs on the tasks of identifying out-of-distribution (OOD) samples and detecting misclassification on the MNIST and CIFAR-10 datasets, where they are found to outperform previous methods. Experiments on synthetic and MNIST data show that unlike previous non-Bayesian methods PNs are able to distinguish between data and distributional uncertainty.
translated by 谷歌翻译
在计算机视觉中探索的分销(OOD)检测良好的虽然,但在NLP分类的情况下已经开始较少尝试。在本文中,我们认为这些目前的尝试没有完全解决ood问题,并且可能遭受数据泄漏和所产生模型的校准差。我们呈现PNPOOD,通过使用最近提出的即插即用语言模型(Dathathri等,2020),通过域外样本生成进行数据增强技术来执行OOD检测。我们的方法产生靠近阶级边界的高质量辨别样本,从而在测试时间内进行准确的检测。我们展示了我们的模型优于预先样本检测的现有模型,并在20次新闻组文本和斯坦福情绪Teebank数据集上展示较低的校准错误(Lang,1995; Socheret al。,2013)。我们进一步突出显示了在EAC检测的先前尝试中使用的数据集进行了重要的数据泄露问题,并在新数据集中分享结果,以便无法遭受同样问题的检测。
translated by 谷歌翻译
在深神经网络中量化预测性不确定性的流行方法通常涉及一组权重或模型,例如通过合并或蒙特卡罗辍学。这些技术通常必须产生开销,必须培训多种模型实例,或者不会产生非常多样化的预测。该调查旨在熟悉基于证据深度学习的概念的替代类模型的读者:对于不熟悉的数据,他们承认“他们不知道的内容”并返回到先前的信仰。此外,它们允许在单个模型中进行不确定性估计,并通过参数化分布分布来转发传递。该调查重新承认现有工作,重点是在分类设置中的实现。最后,我们调查了相同范例的应用到回归问题。我们还对现有的方法进行了反思,并与现有方法相比,并提供最大的核心理论成果,以便通知未来的研究。
translated by 谷歌翻译
We present an approach to quantifying both aleatoric and epistemic uncertainty for deep neural networks in image classification, based on generative adversarial networks (GANs). While most works in the literature that use GANs to generate out-of-distribution (OoD) examples only focus on the evaluation of OoD detection, we present a GAN based approach to learn a classifier that produces proper uncertainties for OoD examples as well as for false positives (FPs). Instead of shielding the entire in-distribution data with GAN generated OoD examples which is state-of-the-art, we shield each class separately with out-of-class examples generated by a conditional GAN and complement this with a one-vs-all image classifier. In our experiments, in particular on CIFAR10, CIFAR100 and Tiny ImageNet, we improve over the OoD detection and FP detection performance of state-of-the-art GAN-training based classifiers. Furthermore, we also find that the generated GAN examples do not significantly affect the calibration error of our classifier and result in a significant gain in model accuracy.
translated by 谷歌翻译
尽管最近的分布(OOD)检测,异常检测和不确定性估计任务的最新进展,但并不存在任务不合时宜的和事后方法。为了解决此限制,我们设计了一种基于聚类的新型结合方法,称为任务不可知和事后看不见的分布检测(TAPUDD),该方法利用了从对特定任务进行训练的模型中提取的功能。它明确地包括Tap-Mahalanobis,该曲线簇起训练数据集的特征,并确定了所有群集的测试样品的最小Mahalanobis距离。此外,我们提出了一个结合模块,该模块汇总了对不同数量簇的迭代TAP-MAHALANOBIS的计算,以提供可靠,有效的群集计算。通过对合成和现实世界数据集进行的广泛实验,我们观察到我们的方法可以在各种任务中有效地检测出看不见的样本,并与现有基线进行更好的或与现有基线相比。为此,我们消除了确定簇数量的最佳价值的必要性,并证明我们的方法对于大规模分类任务更可行。
translated by 谷歌翻译
分销(OOD)检测对于在现实世界中部署机器学习模型是重要的,其中来自移位分布的测试数据可以自然地出现。虽然最近出现了何种算法方法,但何种算法检测,临界差距仍然存在理论上。在这项工作中,我们开发了一个分析框架,其特征,并统一了对OOD检测的理论理解。我们的分析框架激励了一种新颖的电子网络,创业板的检测方法,展示了理论和经验的优势。特别是,在CIFAR-100作为分布数据中,我们的方法优于竞争性基线16.57%(FPR95)。最后,我们正式提供可证明的保证和对我们的方法进行全面分析,支撑数据分布的各种性能如何影响OOD检测的性能。
translated by 谷歌翻译
有限的作品显示无监督的分布(OOD)方法对复杂的医疗数据的功效。在这里,我们展示了我们无监督的OOD检测算法,SIMCLR-LOF的初步调查结果,以及在医学图像上应用的最近现实方法(SSD)的最新状态。SIMCLR-LOF使用SIMCLR学习语义有意义的功能,如果测试样本是ood的,则使用LOF进行评分。我们在多源国际皮肤成像协作(ISIC)2019数据集上进行了评估,并显示与SSD竞争的结果以及应用于同一数据的最近监督方法。
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译
Deep Learning models are easily disturbed by variations in the input images that were not seen during training, resulting in unpredictable behaviours. Such Out-of-Distribution (OOD) images represent a significant challenge in the context of medical image analysis, where the range of possible abnormalities is extremely wide, including artifacts, unseen pathologies, or different imaging protocols. In this work, we evaluate various uncertainty frameworks to detect OOD inputs in the context of Multiple Sclerosis lesions segmentation. By implementing a comprehensive evaluation scheme including 14 sources of OOD of various nature and strength, we show that methods relying on the predictive uncertainty of binary segmentation models often fails in detecting outlying inputs. On the contrary, learning to segment anatomical labels alongside lesions highly improves the ability to detect OOD inputs.
translated by 谷歌翻译
如今,卷积神经网络(CNN)经常用于基于视觉的感知堆栈,用于安全关键的应用,例如自动驾驶或无人驾驶汽车(无人机)。由于这些用例的安全要求,重要的是要知道CNN的局限性,因此要检测到分布外(OOD)样本。在这项工作中,我们提出了一种方法,可以通过利用保证金熵(ME)损失来启用2D对象检测。提出的方法易于实现,可以应用于大多数现有的对象检测体系结构。此外,我们将分离性作为用于检测对象检测中的OOD样品的度量。我们表明,使用标准置信度得分,接受ME损失训练的CNN明显优于OOD检测。同时,基础对象检测框架的运行时间保持不变,使ME损失成为启用OOD检测的强大工具。
translated by 谷歌翻译
检测到分布(OOD)样本对于在现实世界中的分类器的安全部署至关重要。但是,已知深层神经网络对异常数据过于自信。现有作品直接设计得分功能,通过挖掘分别分类器(ID)和OOD的不一致性。在本文中,我们基于以下假设,即对ID数据进行训练的自动编码器无法重建OOD和ID,我们进一步补充了这种不一致性。我们提出了一种新颖的方法,读取(重建误差聚合检测器),以统一分类器和自动编码器的不一致。具体而言,原始像素的重建误差转换为分类器的潜在空间。我们表明,转换后的重建误差桥接了语义差距,并从原始的传承了检测性能。此外,我们提出了一种调整策略,以根据OOD数据的细粒度表征来减轻自动编码器的过度自信问题。在两种情况下,我们分别提出了方法的两个变体,即仅基于预先训练的分类器和读取 - 读取器(欧几里得距离),即读取MD(Mahalanobis距离),该分类器重新训练分类器。我们的方法不需要访问测试时间数据以进行微调超参数。最后,我们通过与最先进的OOD检测算法进行了广泛的比较来证明所提出的方法的有效性。在CIFAR-10预先训练的WideresNet上,我们的方法将平均FPR@95TPR降低了9.8%,而不是先前的最新ART。
translated by 谷歌翻译