尺寸数据减少方法是探索和可视化大数据集的基础。无监督数据探索的基本要求是简单,灵活性和可扩展性。但是,当前方法显示复杂的参数化和强大的计算限制,在跨尺度探索大型数据结构时。在这里,我们专注于T-SNE算法,并显示具有单个控制参数的简化参数设置,即困惑,可以有效地平衡本地和全局数据结构可视化。我们还设计了一个Chunk \&Mix协议,以有效地并行化T-SNE,并探索比目前可用的多种尺度范围的数据结构。我们的BH-TSNE的并行版本,即PT-SNE,融合到良好的全球嵌入,尽管块\和混合协议增加了很少的噪声并降低了当地规模的准确性。尽管如此,我们表明简单的后处理可以有效地恢复本地尺度可视化,而不会在全球范围内损失精度。我们预计相同的方法可以应用于更快的嵌入算法,而不是BH-TSNE,如Fit-Sne或UMAP,因此扩展了最先进的,并导致更全面的数据结构可视化和分析。
translated by 谷歌翻译
We present a new technique called "t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the data sets.
translated by 谷歌翻译
邻居Embeddings是一种使用$ k $ nn图来可视化复杂的高维数据集的方法。为了找到低维嵌入,这些算法将相邻对点之间的吸引力与所有点之间的排斥力相结合。这种算法的最受欢迎的例子之一是T-SNE。在这里,我们经验证明使用夸张参数改变T-SNE中的吸引力和排斥力之间的平衡产生了一种嵌入式,其特点是简单的折衷:更强的吸引力可以更好地代表连续的歧管结构,而更强排斥可以更好地代表离散的集群结构,并收益率较高$ K $ NN召回。我们发现Umap Embeddings对应于涉及吸引力的T-SNE;数学分析表明,这是因为UMAP采用的负采样优化策略强烈降低了有效的排斥。同样,Forceatlas2通常用于可视化发育​​单细胞转录组数据,产生与T-SNE相对应的嵌入,吸引力增加更多。在这个频谱的极端Lieglacian eigenmaps。我们的结果表明,许多突出的邻居嵌入算法可以放置在吸引力频谱上,并突出显示它们之间的固有折衷。
translated by 谷歌翻译
在机器学习中调用多种假设需要了解歧管的几何形状和维度,理论决定了需要多少样本。但是,在应用程序数据中,采样可能不均匀,歧管属性是未知的,并且(可能)非纯化;这意味着社区必须适应本地结构。我们介绍了一种用于推断相似性内核提供数据的自适应邻域的算法。从本地保守的邻域(Gabriel)图开始,我们根据加权对应物进行迭代率稀疏。在每个步骤中,线性程序在全球范围内产生最小的社区,并且体积统计数据揭示了邻居离群值可能违反了歧管几何形状。我们将自适应邻域应用于非线性维度降低,地球计算和维度估计。与标准算法的比较,例如使用K-Nearest邻居,证明了它们的实用性。
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
T分布式随机邻居嵌入(T-SNE)是复杂高维数据的良好的可视化方法。然而,原始T-SNE方法是非参数,随机的,并且通常不能很好地预测数据的全局结构,因为它强调当地社区。通过T-SNE作为参考,我们建议将深度神经网络(DNN)与数学接地的嵌入规则相结合,以进行高维数据嵌入的规则。我们首先介绍一个深嵌入的网络(DEN)框架,它可以从高维空间到低维嵌入的参数映射。 DEN具有灵活的架构,可容纳不同的输入数据(矢量,图像或张量)和损耗功能。为提高嵌入性能,建议递归培训策略利用书房提取的潜在陈述。最后,我们提出了一种两级损耗功能,将两个流行的嵌入方法的优点相结合,即T-SNE和均匀的歧管近似和投影(UMAP),以获得最佳可视化效果。我们将建议的方法命名为深度递归嵌入(DRE),其优化了递归培训策略和两级吊袜带的DEN。我们的实验表明,在各种公共数据库中,所提出的DRE方法对高维数据嵌入的优异性能。值得注意的是,我们的比较结果表明,我们拟议的DRE可能导致全球结构改善。
translated by 谷歌翻译
将高维数据嵌入到低维歧管上具有理论和实用的值。在本文中,我们建议将深神经网络(DNN)与数学引导的嵌入规则相结合,以进行高维数据嵌入的规则。我们介绍了一个通用的深度嵌入网络(DEN)框架,它能够从高维空间到低维空间的参数映射,由诸如Kullback-Leibler(KL)发散最小化的良好的目标引导。我们进一步提出了一种递归策略,称为深度递归嵌入(DRE),以利用潜在的数据表示来提升嵌入性能。我们举例说明DRE通过不同的架构和丢失功能的灵活性,并对我们的方法进行基准测试,以及针对两个最受欢迎的嵌入方法,即T分布式随机邻居嵌入(T-SNE)和均匀歧管近似和投影(UMAP)。所提出的DRE方法可以将样品超出数据和缩放到极大的数据集。与其他最先进的嵌入方法相比,一系列公共数据集的实验表明,在本地和全球结构保护方面提高了嵌入性能。
translated by 谷歌翻译
非线性维度降低可以通过\纺织{歧管学习}方法来执行,例如随机邻居嵌入(SNE),局部线性嵌入(LLE)和等距特征映射(ISOMAP)。这些方法旨在产生两个或三个潜在嵌入的嵌入,主要用于可视化可理解的表示数据。此稿件提出了学生的T分布式SNE(T-SNE),LLE和ISOMAP的扩展,以实现多维数量和多视图数据的可视化。多视图数据是指从相同样本生成的多种类型的数据。与通过单独可视化所获得的数据,所提出的多视图方法提供了比较通过可视化所获得的多个数据的更可理解的预测。通常可视化用于识别样本内的底层模式。通过将获得的低维嵌入从多视图歧管中的方法结合到K-Means聚类算法中,示出了准确地识别出样品的簇。通过对实际和合成数据的分析,发现所提出的多SNE方法具有最佳性能。我们进一步说明了多SNE方法对分析多OMICS单细胞数据的适用性,目的是在与健康和疾病相关的生物组织中可视化和识别细胞异质性和细胞类型。
translated by 谷歌翻译
与高维数据集的探索性分析(例如主成分分析(PCA))相反,邻居嵌入(NE)技术倾向于更好地保留高维数据的局部结构/拓扑。然而,保留局部结构的能力是以解释性为代价的:诸如T-分布的随机邻居嵌入(T-SNE)或统一的歧管近似和投影(UMAP)等技术没有提供拓扑结构的介绍(UMAP)(UMAP)(UMAP)(UMAP)(UMAP)(UMAP)(UMAP)。在相应的嵌入中看到的群集)结构。在这里,我们提出了基于PCA,Q-残基和Hotelling的T2贡献的化学计量学领域的不同“技巧”,并结合了新型可视化方法,从而得出了邻居嵌入的局部和全局解释。我们展示了我们的方法如何使用标准的单变量或多变量方法来识别数据点组之间的歧视性特征。
translated by 谷歌翻译
我们讨论集群分析的拓扑方面,并表明在聚类之前推断数据集的拓扑结构可以大大增强群集检测:理论论证和经验证据表明,聚类嵌入向量,代表数据歧管的结构,而不是观察到的特征矢量他们自己是非常有益的。为了证明,我们将流形学习方法与基于密度的聚类方法DBSCAN结合了歧管学习方法UMAP。合成和真实数据结果表明,这既简化和改善了多种低维问题,包括密度变化和/或纠缠形状的群集。我们的方法简化了聚类,因为拓扑预处理始终降低DBSCAN的参数灵敏度。然后,用dbscan聚类所得的嵌入可以超过诸如spectacl和clustergan之类的复杂方法。最后,我们的调查表明,聚类中的关键问题似乎不是数据的标称维度或其中包含多少不相关的功能,而是\ textIt {可分离}群集在环境观察空间中的\ textit {可分离},它们嵌入了它们中。 ,通常是数据特征定义的(高维)欧几里得空间。我们的方法之所以成功,是因为我们将数据投影到更合适的空间后,从某种意义上说,我们执行了群集分析。
translated by 谷歌翻译
t-SNE remains one of the most popular embedding techniques for visualizing high-dimensional data. Most standard packages of t-SNE, such as scikit-learn, use the Barnes-Hut t-SNE (BH t-SNE) algorithm for large datasets. However, existing CPU implementations of this algorithm are inefficient. In this work, we accelerate the BH t-SNE on CPUs via cache optimizations, SIMD, parallelizing sequential steps, and improving parallelization of multithreaded steps. Our implementation (Acc-t-SNE) is up to 261x and 4x faster than scikit-learn and the state-of-the-art BH t-SNE implementation from daal4py, respectively, on a 32-core Intel(R) Icelake cloud instance.
translated by 谷歌翻译
维数减少(DR)技术有助于分析师理解高维空间的模式。这些技术通常由散点图表示,在不同的科学域中使用,并促进集群和数据样本之间的相似性分析。对于包含许多粒度的数据集或者当分析遵循信息可视化Mantra时,分层DR技术是最合适的方法,因为它们预先呈现了主要结构和需求的详细信息。然而,当前的分层DR技术并不完全能够解决文献问题,因为它们不保留跨分层级别的投影心理映射,或者不适合大多数数据类型。这项工作提出了Humap,一种新颖的等级维度减少技术,旨在灵活地保护本地和全球结构,并在整个分层勘探中保留心理贴图。我们提供了与现有的等级方法相比我们技术优势的经验证据,并显示了两种案例研究以证明其优势。
translated by 谷歌翻译
随机邻居嵌入(SNE)是一种具有概率方法的多种学习和降低方法。在SNE中,每个点都被认为是所有其他点的邻居,并试图将这种概率保存在嵌入空间中。SNE认为在输入空间和嵌入空间中的概率都认为高斯分布。但是,T-SNE分别在这些空间中使用了Student-T和高斯分布。在本教程和调查论文中,我们解释了SNE,对称SNE,T-SNE(或Cauchy-Sne)和T-SNE具有一般自由度。我们还涵盖了这些方法的样本外扩展和加速度。
translated by 谷歌翻译
基于非线性吸引力 - 抑制力的方法(包括T-SNE,UMAP,FORCEATLAS2,grounvis等)主导了维度降低的现代方法。本文的目的是证明所有此类方法,通过设计,都带有一个沿途自动计算的附加功能,即与这些力相关的向量场。我们展示了该向量领域如何提供其他高质量信息,并根据莫尔斯理论的思想提出了一般的完善策略。这些想法的效率是使用T-SNE在合成和现实生活数据集上专门说明的。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
We describe a probabilistic approach to the task of placing objects, described by high-dimensional vectors or by pairwise dissimilarities, in a low-dimensional space in a way that preserves neighbor identities. A Gaussian is centered on each object in the high-dimensional space and the densities under this Gaussian (or the given dissimilarities) are used to define a probability distribution over all the potential neighbors of the object. The aim of the embedding is to approximate this distribution as well as possible when the same operation is performed on the low-dimensional "images" of the objects. A natural cost function is a sum of Kullback-Leibler divergences, one per object, which leads to a simple gradient for adjusting the positions of the low-dimensional images. Unlike other dimensionality reduction methods, this probabilistic framework makes it easy to represent each object by a mixture of widely separated low-dimensional images. This allows ambiguous objects, like the document count vector for the word "bank", to have versions close to the images of both "river" and "finance" without forcing the images of outdoor concepts to be located close to those of corporate concepts. The basic SNE algorithmFor each object, , and each potential neighbor, ¡ , we start by computing the asymmetric probability, ¢ ¤£ ¦¥ , that would pick ¡ as its neighbor:
translated by 谷歌翻译
TSNE和UMAP是两个最流行的降低算法,因为它们的速度和可解释的低维嵌入。但是,尽管已经尝试改善TSNE的计算复杂性,但现有方法无法以UMAP的速度获得TSNE嵌入。在这项工作中,我们表明,通过将两种方法组合为单一方法,这确实是可能的。我们从理论上和实验上评估了TSNE和UMAP算法中参数的完整空间,并观察到单个参数(归一化)负责在它们之间切换。反过来,这意味着可以切换大多数算法差异而不会影响嵌入。我们讨论了这对基于UMAP框架的几种理论主张的含义,以及如何将它们与现有的TSNE解释调和。基于我们的分析,我们提出了一种新的降低性降低算法GDR,该算法结合了先前来自TSNE和UMAP的不兼容技术,并可以通过更改归一化来复制任何一种算法的结果。作为进一步的优势,GDR比可用的UMAP方法更快地执行优化,因此比可用的TSNE方法快的数量级。我们的实施是使用传统的UMAP和TSNE库的插件,可以在github.com/andrew-draganov/gidr-dun上找到。
translated by 谷歌翻译
在解决问题的过程中,通往解决方案的道路可以看作是一系列决策。人类或计算机做出的决定通过问题的高维表示空间来描述轨迹。通过降低维度,可以在较低维空间中可视化这些轨迹。此类嵌入式轨迹先前已应用于各种数据,但是分析几乎完全集中在单轨迹的自相似性上。相比之下,我们描述了在相同的嵌入空间中绘制许多轨迹(对于不同初始条件,终端状态和解决方案策略)而出现的模式。我们认为,可以通过解释这些模式来制定有关解决问题的任务和解决策略的一般性陈述。我们探索并描述了由人类和机器制定的各种应用领域中的决策产生的轨迹中的这种模式:逻辑难题(魔术片),策略游戏(国际象棋)和优化问题(神经网络培训)。 We also discuss the importance of suitably chosen representation spaces and similarity metrics for the embedding.
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
与许多机器学习模型类似,群集加权模型(CWM)的准确性和速度都可以受到高维数据的阻碍,从而导致以前的作品对一种简约的技术,以减少“尺寸诅咒”对混合模型的影响。在这项工作中,我们回顾了集群加权模型(CWM)的背景研究。我们进一步表明,在庞大的高维数据的情况下,简约的技术不足以使混合模型蓬勃发展。我们通过使用“ FlexCWM” R软件包中的默认值选择位置参数的初始值来讨论一种用于检测隐藏组件的启发式。我们引入了一种称为T-分布的随机邻居嵌入(TSNE)的维度降低技术,以增强高维空间中的简约CWM。最初,CWM适用于回归,但出于分类目的,所有多级变量都会用一些噪声进行对数转换。模型的参数是通过预期最大化算法获得的。使用来自不同字段的实际数据集证明了讨论技术的有效性。
translated by 谷歌翻译