适当的统计建模包含域理论关于概念如何相关的概念和如何测量数据的细节。但是,数据分析师目前缺乏以综合方式录制和推理关于域假设,数据收集和建模选择的工具支持,导致可能损害科学有效性的错误。例如,广义线性混合效果模型(GLMMS)有助于回答复杂的研究问题,但省略随机效应损害结果的易用性。为了解决这种需求,我们提出了Tisane,一个混合主动系统,用于创作具有和没有混合效应的广义线性模型。 Tisane介绍了一种研究设计规范语言,用于表达和询问变量之间的关系。 Tisane贡献了一个交互式编译过程,表示图表中的关系,Infers候选统计模型,并询问后续问题来消除用户查询来构造有效模型。在与三位研究人员的研究中,我们发现Tisane有助于他们专注于他们的目标和假设,同时避免过去的错误。
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
发现新药是寻求并证明因果关系。作为一种新兴方法利用人类的知识和创造力,数据和机器智能,因果推论具有减少认知偏见并改善药物发现决策的希望。尽管它已经在整个价值链中应用了,但因子推理的概念和实践对许多从业者来说仍然晦涩难懂。本文提供了有关因果推理的非技术介绍,审查了其最新应用,并讨论了在药物发现和开发中采用因果语言的机会和挑战。
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
船上自治技术,如规划和调度,识别科学目标和基于内容的数据摘要,将导致令人兴奋的新空间科学任务。然而,尚未研究具有此类船上自治能力的经营任务的挑战,这是足以在使命概念中考虑的细节水平。这些自主功能需要更改当前的操作流程,实践和工具。我们制定了一个案例研究,以评估使运营商和科学家通过促进地面人员和车载算法之间的共同模型来运营自主航天器所需的变化。我们评估使运营商和科学家能够向航天器传达所需的新的操作工具和工作流程,并能够重建和解释船上和航天器状态的决定。这些工具的模型用于用户学习,了解过程和工具在实现共享理解框架方面的有效性,以及在运营商和科学家有效实现特派团科学目标的能力。
translated by 谷歌翻译
现实世界的语义或基于知识的系统,例如在生物医学领域,可能会变得大而复杂。因此,对此类系统知识库中故障的本地化和修复的工具支持对于它们的实际成功至关重要。相应地,近年来提出了许多知识库调试方法,尤其是基于本体的系统。基于查询的调试是一种相似的交互式方法,它通过向知识工程师提出一系列问题来定位观察到的问题的真正原因。存在这种方法的具体实现,例如本体论编辑器的OntodeBug插件prof \'eg \'e。为了验证新提出的方法比现有方法有利,研究人员通常依靠基于模拟的比较。但是,这种评估方法有一定的局限性,并且通常无法完全告知我们方法的真实性。因此,我们进行了不同的用户研究,以评估基于查询的本体调试的实际价值。研究的一个主要见解是,所考虑的交互方法确实比基于测试案例的替代算法调试更有效。我们还观察到,用户经常在此过程中犯错误,这突出了对用户需要回答的查询的仔细设计的重要性。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
在线众包平台使对算法输出进行评估变得容易,并提出诸如“哪个图像更好,A或B?”之类的问题的调查,在视觉和图形研究论文中的这些“用户研究”的扩散导致了增加匆忙进行的研究充其量是草率且无知的,并且可能有害和误导。我们认为,在计算机视觉和图形论文中的用户研究的设计和报告需要更多关注。为了提高从业者的知识并提高用户研究的可信度和可复制性,我们提供了用户体验研究(UXR),人类计算机互动(HCI)和相关领域的方法论的概述。我们讨论了目前在计算机视觉和图形研究中未利用的基础用户研究方法(例如,需要调查),但可以为研究项目提供宝贵的指导。我们为有兴趣探索其他UXR方法的读者提供了进一步的指导。最后,我们描述了研究界的更广泛的开放问题和建议。我们鼓励作者和审稿人都认识到,并非每项研究贡献都需要用户研究,而且根本没有研究比不小心进行的研究更好。
translated by 谷歌翻译
使用计算笔记本(例如,Jupyter Notebook),数据科学家根据他们的先前经验和外部知识(如在线示例)合理化他们的探索性数据分析(EDA)。对于缺乏关于数据集或问题的具体了解的新手或数据科学家,有效地获得和理解外部信息对于执行EDA至关重要。本文介绍了eDassistant,一个jupyterlab扩展,支持EDA的原位搜索示例笔记本电脑和有用的API的推荐,由搜索结果的新颖交互式可视化供电。代码搜索和推荐是由最先进的机器学习模型启用的,培训在线收集的EDA笔记本电脑的大型语料库。进行用户学习,以调查埃迪卡斯特和数据科学家的当前实践(即,使用外部搜索引擎)。结果证明了埃迪斯坦特的有效性和有用性,与会者赞赏其对EDA的顺利和环境支持。我们还报告了有关代码推荐工具的几种设计意义。
translated by 谷歌翻译
This volume contains revised versions of the papers selected for the third volume of the Online Handbook of Argumentation for AI (OHAAI). Previously, formal theories of argument and argument interaction have been proposed and studied, and this has led to the more recent study of computational models of argument. Argumentation, as a field within artificial intelligence (AI), is highly relevant for researchers interested in symbolic representations of knowledge and defeasible reasoning. The purpose of this handbook is to provide an open access and curated anthology for the argumentation research community. OHAAI is designed to serve as a research hub to keep track of the latest and upcoming PhD-driven research on the theory and application of argumentation in all areas related to AI.
translated by 谷歌翻译
数据对于机器学习(ML)模型的开发和评估至关重要。但是,在部署所得模型时,使用有问题或不适当的数据集可能会造成危害。为了通过对数据集进行更故意的反思和创建过程的透明度来鼓励负责任的练习,研究人员和从业人员已开始倡导增加数据文档,并提出了几个数据文档框架。但是,几乎没有研究这些数据文档框架是否满足创建和消费数据集的ML从业者的需求。为了解决这一差距,我们着手了解ML从业人员的数据文档感知,需求,挑战和Desiderata,目的是推导设计要求,以便为将来的数据文档框架提供信息。我们对一家大型国际技术公司的14名ML从业者进行了一系列半结构化访谈。我们让他们回答从数据集的数据表中提取的问题列表(Gebru,2021)。我们的发现表明,目前的数据文档方法在很大程度上是临时的,而且本质上是近视的。参与者表达了对数据文档框架的需求,可以适应其上下文,并将其集成到现有的工具和工作流程中,并尽可能自动化。尽管事实上,数据文档框架通常是从负责人的AI的角度出发的,但参与者并未在他们被要求回答的问题与负责的AI含义之间建立联系。此外,参与者通常会在数据集消费者的需求中优先考虑,并提供了不熟悉其数据集可能需要知道的信息。基于这些发现,我们为将来的数据文档框架得出了七个设计要求。
translated by 谷歌翻译
随着人工智能的兴起,算法已经变得更好地从培训数据中学习基本模式,包括基于性别,种族等基于性别的社会偏见。部署此类算法对招聘,医疗保健,执法等领域的部署已经提高了严重的领域。对机器学习算法中的公平,问责制,信任和解释性的关注。为了减轻这个问题,我们提出了D-Bias,这是一种视觉交互式工具,它体现了人类在循环AI方法,以审核和减轻表格数据集的社交偏见。它使用图形因果模型来表示数据集中不同特征之间的因果关系,并作为注入域知识的媒介。用户可以通过识别因果网络中的不公平因果关系并使用一系列公平指标来检测对群体(例如女性或亚组)的偏见。此后,用户可以通过在不公平的因果边缘作用来减轻偏见。对于每种相互作用,例如弱化/删除有偏见的因果边缘,系统使用一种新方法来模拟基于当前因果模型的新(cla依)数据集。用户可以在视觉上评估其相互作用对不同公平指标,公用事业指标,数据失真和基础数据分布的影响。一旦满足,他们就可以下载依据的数据集并将其用于任何下游应用程序以进行更公正的预测。我们通过对3个数据集进行实验以及一项正式的用户研究来评估D偏差。我们发现,与不同公平指标的基线偏差方法相比,D偏差有助于显着降低偏差,同时几乎没有数据失真和效用较小的损失。此外,我们基于人类的方法极大地超过了关于信任,解释性和问责制的自动方法。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
大型语言模型,例如OpenAI的法典和DeepMind的字母,可以生成代码来解决以自然语言表达的各种问题。这项技术已经在至少一项广泛使用的编程编辑器扩展程序中进行了商业化:Github Copilot。在本文中,我们探讨了具有大型语言模型(LLM辅助编程)的编程与程序员协助的先前概念化相似,并且与众不同。我们借鉴了公开可用的经验报告,有关LLM辅助编程以及先前的可用性和设计研究。我们发现,尽管LLM辅助编程通过搜索和重用分享了一些编译,配对编程和编程的属性,但技术可能性和实践经验都存在根本差异。因此,应该将LLM辅助编程视为具有自己独特的属性和挑战的新方法。最后,我们借鉴了用户研究的观察结果,在该观察中,非专家最终用户程序员使用LLM辅助工具来求解电子表格中的数据任务。我们讨论可能出现的问题,并在将大型语言模型应用于最终用户编程时,尤其是对于几乎没有编程专业知识的用户。
translated by 谷歌翻译
背景:机器学习(ML)可以实现有效的自动测试生成。目的:我们表征了新兴研究,检查测试实践,研究人员目标,应用的ML技术,评估和挑战。方法:我们对97个出版物的样本进行系统文献综述。结果:ML生成系统,GUI,单位,性能和组合测试的输入或改善现有生成方法的性能。 ML还用于生成测试判决,基于属性的和预期的输出序列。经常基于神经网络和强化学习的监督学习通常是基于Q学习的 - 很普遍,并且某些出版物还采用了无监督或半监督的学习。使用传统的测试指标和与ML相关的指标(例如准确性)评估(半/非 - )监督方法,而经常使用与奖励功能相关的测试指标来评估强化学习。结论:工作到尽头表现出巨大的希望,但是在培训数据,再探术,可伸缩性,评估复杂性,所采用的ML算法以及如何应用 - 基准和可复制性方面存在公开挑战。我们的发现可以作为该领域研究人员的路线图和灵感。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
最近的自主代理和机器人的应用,如自动驾驶汽车,情景的培训师,勘探机器人和服务机器人带来了关注与当前生成人工智能(AI)系统相关的至关重要的信任相关挑战。尽管取得了巨大的成功,基于连接主义深度学习神经网络方法的神经网络方法缺乏解释他们对他人的决策和行动的能力。没有符号解释能力,它们是黑色盒子,这使得他们的决定或行动不透明,这使得难以信任它们在安全关键的应用中。最近对AI系统解释性的立场目睹了可解释的人工智能(XAI)的几种方法;然而,大多数研究都专注于应用于计算科学中的数据驱动的XAI系统。解决越来越普遍的目标驱动器和机器人的研究仍然缺失。本文评论了可解释的目标驱动智能代理和机器人的方法,重点是解释和沟通代理人感知功能的技术(示例,感官和愿景)和认知推理(例如,信仰,欲望,意图,计划和目标)循环中的人类。审查强调了强调透明度,可辨与和持续学习以获得解释性的关键策略。最后,本文提出了解释性的要求,并提出了用于实现有效目标驱动可解释的代理和机器人的路线图。
translated by 谷歌翻译