分布式训练是通过将任务分配到多个NPU(例如GPU/TPU)来减少DNN训练时间的解决方案。但是,分布式培训增加了NPU之间的通信开销,以使梯度和/或激活同步,具体取决于并行化策略。在用于大规模培训的下一代平台中,NPU将通过具有多种多样的异质带宽的多维网络连接。这项工作确定了一个迫在眉睫的挑战,即如果我们利用日程安排技术来使整个系统进行集体沟通,使所有网络维度保持繁忙并最大化网络BW。我们提出了Themis,这是一种新颖的集体调度方案,该方案动态调度集体(分为块)以平衡各个维度的通信负载,从而进一步改善了网络BW利用率。我们的结果表明,平均而言,Themis可以将单个全减还器的网络BW利用提高1.72倍(2.70倍),并改善实际工作负载的端到端训练迭代迭代迭代迭代迭代性能,例如RESNET-152,GNMT ,DLRM和Transformer-1T分别为1.49倍(最大2.25倍),1.30倍(1.78倍),1.30x(最大1.77倍)和1.25X(最大1.53倍)。
translated by 谷歌翻译
RDMA超过融合以太网(ROCE),由于其与常规以太网的织物的兼容性,对数据中心网络具有重要的吸引力。但是,RDMA协议仅在(几乎)无损网络上有效,这强调了拥塞控制对ROCE网络的重要作用。不幸的是,基于优先流量控制(PFC)的本地ROCE拥塞控制方案遭受了许多缺点,例如不公平,线路阻滞和僵局。因此,近年来,已经提出许多计划为ROCE网络提供额外的拥塞控制,以最大程度地减少PFC缺点。但是,这些方案是针对一般数据中心环境提出的。与使用商品硬件构建并运行通用工作负载的一般数据中心相反,高性能分布式培训平台部署高端加速器和网络组件,并专门使用集体(全能,全能,全能)运行培训工作负载)通信库进行通信。此外,这些平台通常具有一个私人网络,将其通信流量与其他数据中心流量分开。可扩展的拓扑意识集体算法固有地设计旨在避免造成的模式并最佳地平衡流量。这些独特的功能需要重新审视先前提出的通用数据中心环境的拥塞控制方案。在本文中,我们彻底分析了在分布式培训平台上运行时的一些SOTA ROCE拥塞控制方案与PFC。我们的结果表明,先前提出的ROCE拥塞控制计划对培训工作负载的端到端表现几乎没有影响,这激发了根据分布式培训平台和分布式培训平台和特征的设计优化但低空的拥塞控制计划的必要性工作负载。
translated by 谷歌翻译
Distributed deep learning (DDL) systems strongly depend on network performance. Current electronic packet switched (EPS) network architectures and technologies suffer from variable diameter topologies, low-bisection bandwidth and over-subscription affecting completion time of communication and collective operations. We introduce a near-exascale, full-bisection bandwidth, all-to-all, single-hop, all-optical network architecture with nanosecond reconfiguration called RAMP, which supports large-scale distributed and parallel computing systems (12.8~Tbps per node for up to 65,536 nodes). For the first time, a custom RAMP-x MPI strategy and a network transcoder is proposed to run MPI collective operations across the optical circuit switched (OCS) network in a schedule-less and contention-less manner. RAMP achieves 7.6-171$\times$ speed-up in completion time across all MPI operations compared to realistic EPS and OCS counterparts. It can also deliver a 1.3-16$\times$ and 7.8-58$\times$ reduction in Megatron and DLRM training time respectively} while offering 42-53$\times$ and 3.3-12.4$\times$ improvement in energy consumption and cost respectively.
translated by 谷歌翻译
Modern Deep Learning (DL) models have grown to sizes requiring massive clusters of specialized, high-end nodes to train. Designing such clusters to maximize both performance and utilization to amortize their steep cost is a challenging task requiring careful balance of compute, memory, and network resources. Moreover, a plethora of each model's tuning knobs drastically affect the performance, with optimal values often depending on the underlying cluster's characteristics, which necessitates a complex cluster-workload co-design process. To facilitate the design space exploration of such massive DL training clusters, we introduce COMET a holistic cluster design methodology and workflow to jointly study the impact of parallelization strategies and key cluster resource provisioning on the performance of distributed DL training. We develop a step-by-step process to establish a reusable and flexible methodology, and demonstrate its application with a case study of training a Transformer-1T model on a cluster of variable compute, memory, and network resources. Our case study demonstrates COMET's utility in identifying promising architectural optimization directions and guiding system designers in configuring key model and cluster parameters.
translated by 谷歌翻译
大型ML型号和数据集已经需要使用多GPU系统进行分布式模型培训。为了利用多GPU系统提供的权力,消除GPU间通信中的瓶颈至关重要 - 互连异构性质的问题挑战。在这项工作中,我们呈现TACCL,这是用于大规模多GPU系统的集体通信原语的合成器。 TACCL将异形拓扑和输入大小进行编码为合成问题,以生成优化的通信算法。 TACCL建立在标准的NVIDIA集体通信库(NCCL)之上,允许它成为PYTORCH等框架中GPU通信的替代品,具有最小的变化。 TACCL为全球,AllToAll和ALLERDUCE等通信基元生成算法,该算法高达3美元的速度超过NCCL。使用TACCL的算法加快了专家模型内部混合物的端到端培训,以17 \%$。通过将优化问题分解成零件并利用多GPU拓扑中的对称性,TACCL在不到3分钟内合成高达80-GPU的集体,比其他基于综合的状态快至少两个数量级 - 艺术集体通信图书馆。
translated by 谷歌翻译
许多微体系式优化为深度神经网络解锁了巨大的处理能力,从而促进了AI革命。随着这种优化的精疲力尽,现代AI的增长现在是通过培训系统的性能,尤其是其数据流动的。我们没有专注于单个加速器,而是研究了全系统规模的大规模培训的数据移动特征。基于我们的工作量分析,我们设计了HammingMesh,这是一种新颖的网络拓扑,以低成本提供高的带宽,并具有很高的工作计划灵活性。具体而言,HammingMesh可以支持具有两个并行性的两个维度的深度学习培训工作的完整带宽和隔离。此外,它还为通用流量的高全球带宽提供支持。因此,HammingMesh将为未来的大规模深度学习系统供电,并具有极端的带宽要求。
translated by 谷歌翻译
我们旨在通过引入全面的分布式深度学习(DDL)探索器来解决此问题,该研究人员可以确定DDL在公共云上运行时遭受的各种执行“失速”。我们已经通过扩展先前的工作来估算两种类型的通信失速 - 互连和网络摊位来实现剖面。我们使用Profiler培训流行的DNN模型来表征各种AWS GPU实例,并列出了用户做出明智决定的优势和缺点。我们观察到,较昂贵的GPU实例可能不是所有DNN型号的性能最多,并且AWS可能会在次优的硬件互连资源分配次优。具体而言,与单个实例的培训相比,机内互连可以引入高达90%的DNN培训时间和网络连接的实例的通信开销,而与网络连接的实例可能会遭受高达5倍的速度。此外,我们对DNN宏观特征的影响进行建模,例如层的数量和通信摊位上的梯度数量。最后,我们为用户提出了一个基于衡量的建议模型,以降低DDL的公共云货币成本。
translated by 谷歌翻译
过去的几年见证了基于变压器的模型的成功,其规模和应用方案继续积极发展。变压器模型的当前景观越来越多样化:该模型大小差异很大,最大的参数是最大的。模型特性由于特征的混合物所引入的稀疏性而有所不同。目标应用程序方案可以是关键延迟或面向吞吐量的情况;部署硬件可以是具有不同类型的内存和存储等单身或多GPU系统。随着多样性的增加和变压器模型的快速发展速度,设计高性能和高效的推理系统非常具有挑战性。在本文中,我们提出了DeepSpeed推断,这是用于解决上述挑战的变压器模型推理的全面系统解决方案。深速推理包括(1)一种多GPU推理解决方案,可最大程度地减少潜伏度,同时最大化密集和稀疏变压器模型的吞吐量,当它们适合聚集的GPU内存时,以及(2)一种异质推理解决方案,该解决方案利用CPU和NVME内存中的CPU和NVME内存。除了GPU内存和计算以使高推理吞吐量具有不适合聚集GPU内存的大型推理吞吐量。对于面向延迟的方案,深速推理可将延迟降低到最新的7倍,而对于面向吞吐量的方案,延迟的潜伏期将延迟减少到1.5倍以上。此外,它通过利用数百个GPU来实现实时延迟约束下的参数量表推断,这是一个前所未有的推理。它可以比仅使用GPU的解决方案更大的25倍模型,同时提供84个TFLOPS(超过50美元的A6000峰值)。
translated by 谷歌翻译
We study a novel and important communication pattern in large-scale model-parallel deep learning (DL), which we call cross-mesh resharding. This pattern emerges when the two paradigms of model parallelism - intra-operator and inter-operator parallelism - are combined to support large models on large clusters. In cross-mesh resharding, a sharded tensor needs to be sent from a source device mesh to a destination device mesh, on which the tensor may be distributed with the same or different layouts. We formalize this as a many-to-many multicast communication problem, and show that existing approaches either are sub-optimal or do not generalize to different network topologies or tensor layouts, which result from different model architectures and parallelism strategies. We then propose two contributions to address cross-mesh resharding: an efficient broadcast-based communication system, and an "overlapping-friendly" pipeline schedule. On microbenchmarks, our overall system outperforms existing ones by up to 10x across various tensor and mesh layouts. On end-to-end training of two large models, GPT-3 and U-Transformer, we improve throughput by 10% and 50%, respectively.
translated by 谷歌翻译
ALPA通过生成统一数据,操作员和管道并行性的执行计划来自动对大型深度学习(DL)模型的模型平行训练。现有的模型并行训练系统要求用户手动创建并行化计划,或者自动从有限的模型并行性配置中生成一个计划。它们不足以在分布式计算设备上扩展复杂的DL模型。 ALPA通过将并行性视为两个层次级别来分配大型DL模型的训练:操作员和操作员并行性。基于它,ALPA构建了一个新的分层空间,用于大规模的模型并行执行计划。 ALPA设计了许多汇编,以在每个并行性级别自动得出有效的并行执行计划。 ALPA实现了有效的运行时,以在分布式计算设备上协调两级并行执行。我们的评估表明,ALPA生成的并行化计划,即使在其设计的型号上,也可以匹配或超过手动模型并联训练系统。与专业系统不同,ALPA还推广到具有异质体系结构和模型的模型,而没有手动设计的计划。 ALPA的源代码可在https://github.com/alpa-projects/alpa上公开获得
translated by 谷歌翻译
图形神经网络(GNN)的输入图的大小不断增加,突显了使用多GPU平台的需求。但是,由于计算不平衡和效率较低的通信,现有的多GPU GNN解决方案遭受了劣质性能。为此,我们提出了MGG,这是一种新型的系统设计,可以通过以GPU为中心的软件管道在多GPU平台上加速GNN。 MGG探讨了通过细粒度计算通信管道中隐藏GNN工作负载中远程内存访问延迟的潜力。具体而言,MGG引入了管​​道感知工作负载管理策略和混合数据布局设计,以促进通信局限性重叠。 MGG实现以优化的管道为中心的内核。它包括工作负载交织和基于经经的映射,以进行有效的GPU内核操作管道和专门的内存设计以及优化,以更好地数据访问性能。此外,MGG还结合了轻巧的分析建模和优化启发式方法,以动态提高运行时不同设置的GNN执行性能。全面的实验表明,MGG在各种GNN设置上的最先进的多GPU系统要比最先进的多GPU系统:平均比具有统一虚拟内存设计的多GPU系统快3.65倍,平均比DGCL框架快7.38倍。
translated by 谷歌翻译
近来增加大型机器学习模型的趋势需要分发培训和推理任务。考虑到培训这些模型的巨大成本,必须在计算和沟通中解锁优化以获得最佳性能。然而,深入学习框架中的计算和通信内核之间的当前逻辑分离遍及此类障碍的优化机会。通过整体考虑破坏此抽象可以提供许多优化,以提供分布式工作负载中的性能改进。手动应用这些优化需要在每个场景中的底层计算和通信库中的修改,这是耗时和容易出错的。因此,我们呈现Coconet,用DSL表达具有计算和通信的程序。 Coconet包含几种机器学习感知转换,以优化程序和编译器以生成高性能内核。作为第一类构造的计算和通信允许用户在高级抽象上工作,并应用强大的优化,例如融合或传播和计算重叠。 Coconet使我们能够以几行代码在大型语言模型中优化数据,模型和管道平行工作负载。实验显示椰子显着优于最先进的分布式机器学习实现。
translated by 谷歌翻译
分布式数据并行训练已被广泛用于深神经网络(DNN)模型。尽管当前的深度学习(DL)框架对于图像分类模型(例如图像分类模型)的密集模型很好地扩展了,但我们发现这些DL框架对于具有高度稀疏嵌入表的稀疏模型(NLP)模型(NLP)模型(NLP)模型具有相对较低的可扩展性。大多数现有作品忽略了模型参数的稀疏性,因此遭受了重要但不必要的沟通开销。在本文中,我们提出了Ablace,这是一个有效的沟通框架,以加快稀疏模型分布式培训的通信。 Embrace引入了稀疏感知的混合通信,将AlltoAll和模型并行置于数据并行训练中,以减少高度稀疏参数的交流开销。为了有效地重叠稀疏的通信与后向前和前向计算,采用进一步设计的2D通信调度方法,该方法优化了模型计算过程,放松嵌入式的依赖性,并计划以优先级的排队来安排每个嵌入行的稀疏通信。我们已经基于Pytorch和Horovod实施了Embrace的原型,并通过四个代表性的NLP模型进行了全面的评估。实验结果表明,与最先进的分布式训练基线相比,Embrace的速度高达2.41倍。
translated by 谷歌翻译
培训深神经网络(DNNS)在企业和云数据中心都广受欢迎。现有的DNN培训调度程序将GPU视为主要资源,并分配其他资源,例如CPU和内存与作业要求的GPU数量成正比。不幸的是,这些调度程序不考虑作业对CPU,内存和存储资源分配的敏感性的影响。在这项工作中,我们提出了Synergy,这是一种对共享GPU群集的资源敏感调度程序。通过乐观的分析,协同作用侵犯了DNN对不同资源的敏感性;某些工作可能会从GPU育儿分配中受益更多,而某些工作可能不会受到GPU育儿分配的影响。 Synergy使用新的近乎最佳的在线算法在共享的多租户集群上安排的一组作业进行了多余的工作量感知作业。我们的实验表明,与传统的GPU育儿计划相比,工作量感知的CPU和内存分配可以提高平均JCT高达3.4倍。
translated by 谷歌翻译
扩展培训工作负载的能力是深度学习的关键性能推动者之一。主要缩放方法是基于数据并行GPU的培训,该培训已经被硬件和软件支持高效地支持高效的GPU通信,特别是通过带宽过度曝光。此支持以A价格出现:相对于其“消费者级”对应物,“云级”服务器之间存在幅度成本差异,但相对于其“消费者级”对应物,虽然服务器级和消费者级GPU可以具有类似的计算信封。在本文中,我们调查了昂贵的硬件过度控制方法是否可以通过算法和系统设计所涵盖,并提出称为CGX的框架,为通信压缩提供有效的软件支持。我们认为,在没有硬件支持的情况下,该框架能够从消费者级多GPU系统中删除通信瓶颈:在没有硬件支持的情况下:在培训现代模型和全部准确性方面时,我们的框架可以在商品上进行2-3倍的自动加速系统使用8个消费者级NVIDIA RTX 3090 GPU,并使其超越NVIDIA DGX-1服务器的吞吐量,其具有类似的峰值闪光,但是从带宽过度提供的益处。
translated by 谷歌翻译
在过去的十年中,深度神经网络(DNNS)的规模成倍增长,只剩下那些具有大量基于数据中心的资源的人具有开发和培训此类模型的能力。对于可能只有有限的资源(例如,单个多GPU服务器)的研究人员的长尾巴的主要挑战之一是GPU内存能力与模型大小相比。问题是如此严重,以至于训练大规模DNN模型的内存需求通常可以超过单个服务器上所有可用GPU的总容量;这个问题只会随着不断增长的模型大小的趋势而变得更糟。当前依赖于虚拟化GPU内存的解决方案(通过向CPU内存交换/从CPU内存)会产生过多的交换开销。在本文中,我们提出了一个新的培训框架,和谐和倡导者,重新思考了DNN框架如何安排计算并移动数据以在单个商品服务器上有效地推动培训大规模模型的边界。在各种大型DNN模型中,Harmony能够将交换负载最多减少两个数量级,并在具有虚拟化内存的高度优化基线上获得高达7.6倍的训练吞吐量加速。
translated by 谷歌翻译
CNN-based surrogates have become prevalent in scientific applications to replace conventional time-consuming physical approaches. Although these surrogates can yield satisfactory results with significantly lower computation costs over small training datasets, our benchmarking results show that data-loading overhead becomes the major performance bottleneck when training surrogates with large datasets. In practice, surrogates are usually trained with high-resolution scientific data, which can easily reach the terabyte scale. Several state-of-the-art data loaders are proposed to improve the loading throughput in general CNN training; however, they are sub-optimal when applied to the surrogate training. In this work, we propose SOLAR, a surrogate data loader, that can ultimately increase loading throughput during the training. It leverages our three key observations during the benchmarking and contains three novel designs. Specifically, SOLAR first generates a pre-determined shuffled index list and accordingly optimizes the global access order and the buffer eviction scheme to maximize the data reuse and the buffer hit rate. It then proposes a tradeoff between lightweight computational imbalance and heavyweight loading workload imbalance to speed up the overall training. It finally optimizes its data access pattern with HDF5 to achieve a better parallel I/O throughput. Our evaluation with three scientific surrogates and 32 GPUs illustrates that SOLAR can achieve up to 24.4X speedup over PyTorch Data Loader and 3.52X speedup over state-of-the-art data loaders.
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
变形金刚是一种深入学习语言模型,用于数据中心中的自然语言处理(NLP)服务。在变压器模型中,生成的预训练的变压器(GPT)在文本生成或自然语言生成(NLG)中取得了显着的性能,它需要在摘要阶段处理大型输入上下文,然后是产生一个生成阶段的一次单词。常规平台(例如GPU)专门用于在摘要阶段平行处理大型输入,但是由于其顺序特征,它们的性能在生成阶段显着降低。因此,需要一个有效的硬件平台来解决由文本生成的顺序特征引起的高潜伏期。在本文中,我们提出了DFX,这是一种多FPGA加速器,该设备在摘要和发电阶段中执行GPT-2模型端到端,并具有低延迟和高吞吐量。 DFX使用模型并行性和优化的数据流,这是模型和硬件感知的设备之间快速同时执行执行。其计算核心根据自定义说明运行,并提供GPT-2操作端到端。我们在四个Xilinx Alveo U280 FPGAS上实现了建议的硬件体系结构,并利用了高带宽内存(HBM)的所有频道,以及用于高硬件效率的最大计算资源数量。 DFX在现代GPT-2模型上实现了四个NVIDIA V100 GPU的5.58倍加速度和3.99倍的能效。 DFX的成本效益比GPU设备更具成本效益,这表明它是云数据中心中文本生成工作负载的有前途解决方案。
translated by 谷歌翻译
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
translated by 谷歌翻译