许多微体系式优化为深度神经网络解锁了巨大的处理能力,从而促进了AI革命。随着这种优化的精疲力尽,现代AI的增长现在是通过培训系统的性能,尤其是其数据流动的。我们没有专注于单个加速器,而是研究了全系统规模的大规模培训的数据移动特征。基于我们的工作量分析,我们设计了HammingMesh,这是一种新颖的网络拓扑,以低成本提供高的带宽,并具有很高的工作计划灵活性。具体而言,HammingMesh可以支持具有两个并行性的两个维度的深度学习培训工作的完整带宽和隔离。此外,它还为通用流量的高全球带宽提供支持。因此,HammingMesh将为未来的大规模深度学习系统供电,并具有极端的带宽要求。
translated by 谷歌翻译
Distributed deep learning (DDL) systems strongly depend on network performance. Current electronic packet switched (EPS) network architectures and technologies suffer from variable diameter topologies, low-bisection bandwidth and over-subscription affecting completion time of communication and collective operations. We introduce a near-exascale, full-bisection bandwidth, all-to-all, single-hop, all-optical network architecture with nanosecond reconfiguration called RAMP, which supports large-scale distributed and parallel computing systems (12.8~Tbps per node for up to 65,536 nodes). For the first time, a custom RAMP-x MPI strategy and a network transcoder is proposed to run MPI collective operations across the optical circuit switched (OCS) network in a schedule-less and contention-less manner. RAMP achieves 7.6-171$\times$ speed-up in completion time across all MPI operations compared to realistic EPS and OCS counterparts. It can also deliver a 1.3-16$\times$ and 7.8-58$\times$ reduction in Megatron and DLRM training time respectively} while offering 42-53$\times$ and 3.3-12.4$\times$ improvement in energy consumption and cost respectively.
translated by 谷歌翻译
ALPA通过生成统一数据,操作员和管道并行性的执行计划来自动对大型深度学习(DL)模型的模型平行训练。现有的模型并行训练系统要求用户手动创建并行化计划,或者自动从有限的模型并行性配置中生成一个计划。它们不足以在分布式计算设备上扩展复杂的DL模型。 ALPA通过将并行性视为两个层次级别来分配大型DL模型的训练:操作员和操作员并行性。基于它,ALPA构建了一个新的分层空间,用于大规模的模型并行执行计划。 ALPA设计了许多汇编,以在每个并行性级别自动得出有效的并行执行计划。 ALPA实现了有效的运行时,以在分布式计算设备上协调两级并行执行。我们的评估表明,ALPA生成的并行化计划,即使在其设计的型号上,也可以匹配或超过手动模型并联训练系统。与专业系统不同,ALPA还推广到具有异质体系结构和模型的模型,而没有手动设计的计划。 ALPA的源代码可在https://github.com/alpa-projects/alpa上公开获得
translated by 谷歌翻译
分布式训练是通过将任务分配到多个NPU(例如GPU/TPU)来减少DNN训练时间的解决方案。但是,分布式培训增加了NPU之间的通信开销,以使梯度和/或激活同步,具体取决于并行化策略。在用于大规模培训的下一代平台中,NPU将通过具有多种多样的异质带宽的多维网络连接。这项工作确定了一个迫在眉睫的挑战,即如果我们利用日程安排技术来使整个系统进行集体沟通,使所有网络维度保持繁忙并最大化网络BW。我们提出了Themis,这是一种新颖的集体调度方案,该方案动态调度集体(分为块)以平衡各个维度的通信负载,从而进一步改善了网络BW利用率。我们的结果表明,平均而言,Themis可以将单个全减还器的网络BW利用提高1.72倍(2.70倍),并改善实际工作负载的端到端训练迭代迭代迭代迭代迭代性能,例如RESNET-152,GNMT ,DLRM和Transformer-1T分别为1.49倍(最大2.25倍),1.30倍(1.78倍),1.30x(最大1.77倍)和1.25X(最大1.53倍)。
translated by 谷歌翻译
大型ML型号和数据集已经需要使用多GPU系统进行分布式模型培训。为了利用多GPU系统提供的权力,消除GPU间通信中的瓶颈至关重要 - 互连异构性质的问题挑战。在这项工作中,我们呈现TACCL,这是用于大规模多GPU系统的集体通信原语的合成器。 TACCL将异形拓扑和输入大小进行编码为合成问题,以生成优化的通信算法。 TACCL建立在标准的NVIDIA集体通信库(NCCL)之上,允许它成为PYTORCH等框架中GPU通信的替代品,具有最小的变化。 TACCL为全球,AllToAll和ALLERDUCE等通信基元生成算法,该算法高达3美元的速度超过NCCL。使用TACCL的算法加快了专家模型内部混合物的端到端培训,以17 \%$。通过将优化问题分解成零件并利用多GPU拓扑中的对称性,TACCL在不到3分钟内合成高达80-GPU的集体,比其他基于综合的状态快至少两个数量级 - 艺术集体通信图书馆。
translated by 谷歌翻译
We study a novel and important communication pattern in large-scale model-parallel deep learning (DL), which we call cross-mesh resharding. This pattern emerges when the two paradigms of model parallelism - intra-operator and inter-operator parallelism - are combined to support large models on large clusters. In cross-mesh resharding, a sharded tensor needs to be sent from a source device mesh to a destination device mesh, on which the tensor may be distributed with the same or different layouts. We formalize this as a many-to-many multicast communication problem, and show that existing approaches either are sub-optimal or do not generalize to different network topologies or tensor layouts, which result from different model architectures and parallelism strategies. We then propose two contributions to address cross-mesh resharding: an efficient broadcast-based communication system, and an "overlapping-friendly" pipeline schedule. On microbenchmarks, our overall system outperforms existing ones by up to 10x across various tensor and mesh layouts. On end-to-end training of two large models, GPT-3 and U-Transformer, we improve throughput by 10% and 50%, respectively.
translated by 谷歌翻译
变形金刚是一种深入学习语言模型,用于数据中心中的自然语言处理(NLP)服务。在变压器模型中,生成的预训练的变压器(GPT)在文本生成或自然语言生成(NLG)中取得了显着的性能,它需要在摘要阶段处理大型输入上下文,然后是产生一个生成阶段的一次单词。常规平台(例如GPU)专门用于在摘要阶段平行处理大型输入,但是由于其顺序特征,它们的性能在生成阶段显着降低。因此,需要一个有效的硬件平台来解决由文本生成的顺序特征引起的高潜伏期。在本文中,我们提出了DFX,这是一种多FPGA加速器,该设备在摘要和发电阶段中执行GPT-2模型端到端,并具有低延迟和高吞吐量。 DFX使用模型并行性和优化的数据流,这是模型和硬件感知的设备之间快速同时执行执行。其计算核心根据自定义说明运行,并提供GPT-2操作端到端。我们在四个Xilinx Alveo U280 FPGAS上实现了建议的硬件体系结构,并利用了高带宽内存(HBM)的所有频道,以及用于高硬件效率的最大计算资源数量。 DFX在现代GPT-2模型上实现了四个NVIDIA V100 GPU的5.58倍加速度和3.99倍的能效。 DFX的成本效益比GPU设备更具成本效益,这表明它是云数据中心中文本生成工作负载的有前途解决方案。
translated by 谷歌翻译
培训尺寸培训大型深度学习模型非常具有挑战性。本文提出了一种新型管道并行方案,该方案结合了双向管道,以有效地训练大规模模型。嵌合体是一种同步方法,因此不会损失精度,比异步方法更加融合。与最新的同步管道方法相比,嵌合体将气泡的数量降低至50%;受益于双向管道的复杂调度,嵌合体具有更平衡的激活记忆消耗。评估是在基于变压器的语言模型上进行的。对于在PIZ Daint超级计算机的2,048个GPU节点上运行的GPT-2模型,Chimera通过最先进的同步和异步管道方法将培训吞吐量提高了1.16x-2.34x。
translated by 谷歌翻译
RDMA超过融合以太网(ROCE),由于其与常规以太网的织物的兼容性,对数据中心网络具有重要的吸引力。但是,RDMA协议仅在(几乎)无损网络上有效,这强调了拥塞控制对ROCE网络的重要作用。不幸的是,基于优先流量控制(PFC)的本地ROCE拥塞控制方案遭受了许多缺点,例如不公平,线路阻滞和僵局。因此,近年来,已经提出许多计划为ROCE网络提供额外的拥塞控制,以最大程度地减少PFC缺点。但是,这些方案是针对一般数据中心环境提出的。与使用商品硬件构建并运行通用工作负载的一般数据中心相反,高性能分布式培训平台部署高端加速器和网络组件,并专门使用集体(全能,全能,全能)运行培训工作负载)通信库进行通信。此外,这些平台通常具有一个私人网络,将其通信流量与其他数据中心流量分开。可扩展的拓扑意识集体算法固有地设计旨在避免造成的模式并最佳地平衡流量。这些独特的功能需要重新审视先前提出的通用数据中心环境的拥塞控制方案。在本文中,我们彻底分析了在分布式培训平台上运行时的一些SOTA ROCE拥塞控制方案与PFC。我们的结果表明,先前提出的ROCE拥塞控制计划对培训工作负载的端到端表现几乎没有影响,这激发了根据分布式培训平台和分布式培训平台和特征的设计优化但低空的拥塞控制计划的必要性工作负载。
translated by 谷歌翻译
在过去十年中,已经开发出新的深度学习(DL)算法,工作负载和硬件来解决各种问题。尽管工作量和硬件生态系统的进步,DL系统的编程方法是停滞不前的。 DL工作负载从DL库中的高度优化,特定于平台和不灵活的内核,或者在新颖的操作员的情况下,通过具有强大性能的DL框架基元建立参考实现。这项工作介绍了Tensor加工基元(TPP),一个编程抽象,用于高效的DL工作负载的高效,便携式实现。 TPPS定义了一组紧凑而多才多艺的2D张镜操作员(或虚拟张量ISA),随后可以用作构建块,以在高维张量上构建复杂的运算符。 TPP规范是平台 - 不可行的,因此通过TPPS表示的代码是便携式的,而TPP实现是高度优化的,并且特定于平台。我们展示了我们使用独立内核和端到端DL&HPC工作负载完全通过TPPS表达的方法的效力和生存性,这在多个平台上优于最先进的实现。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
分散算法是一种计算形式,通过依赖于直接连接代理之间的低成本通信的本地动态实现全局目标。在涉及分布式数据集的大规模优化任务中,分散算法显示出强大,有时优越,性能与中央节点的分布式算法。最近,发展分散的深度学习算法引起了极大的关注。它们被视为使用参数服务器或环形恢复协议的那些的低通信开销替代方案。但是,缺乏易于使用和高效的软件包仅在纸上保持了最分散的算法。为了填补差距,我们介绍了Bluefog,一个Python库进行了直接的,高性能的不同分散算法的实现。基于各种通信操作的统一抽象,Bluefog提供直观的接口来实现分散的算法的频谱,从使用静态无向图的那些,用于使用动态和定向图形的同步操作进行异步操作。 Bluefog还采用了多种系统级加速技术,以进一步优化深度学习任务的性能。在主流DNN培训任务中,Bluefog达到了更高的吞吐量,并实现了一个总体上的吞吐量1.2 \ times \ sim 1.8 \ times $ speedup,这是一个基于环 - allyuce的最先进的分布式深度学习包。 Bluefog是https://github.com/bluefog-lib/bluefog的开源。
translated by 谷歌翻译
在过去几年中,培训最先进的神经网络的记忆要求远远超过了现代硬件加速器的DRAM能力。这仍然需要开发有效的算法,并在大规模的基于GPU的集群上并行培训这些神经网络。由于在现代GPU上的计算相对便宜,因此在这些并行训练算法中设计和实现极其有效的通信对于提取最大性能至关重要。本文介绍了Axonn,一个并行深度学习框架,用于利用异步和消息驱动的执行来安排每个GPU上的神经网络操作,从而降低GPU空闲时间并最大限度地提高硬件效率。通过使用CPU存储器作为划痕空间来定期在训练期间定期卸载数据,AXONN能够将GPU存储器消耗降低四次。这使我们可以将每个GPU的参数数量增加四次,从而减少通信量并将性能提高超过13%。在48-384 NVIDIA TESLA V100 GPU的大型变压器模型上进行了12-100亿参数,Axonn实现了理论峰的49.4-54.78%的每GPU吞吐量,并将培训时间减少22-37天(15-25与最先进的加速度)。
translated by 谷歌翻译
Modern Deep Learning (DL) models have grown to sizes requiring massive clusters of specialized, high-end nodes to train. Designing such clusters to maximize both performance and utilization to amortize their steep cost is a challenging task requiring careful balance of compute, memory, and network resources. Moreover, a plethora of each model's tuning knobs drastically affect the performance, with optimal values often depending on the underlying cluster's characteristics, which necessitates a complex cluster-workload co-design process. To facilitate the design space exploration of such massive DL training clusters, we introduce COMET a holistic cluster design methodology and workflow to jointly study the impact of parallelization strategies and key cluster resource provisioning on the performance of distributed DL training. We develop a step-by-step process to establish a reusable and flexible methodology, and demonstrate its application with a case study of training a Transformer-1T model on a cluster of variable compute, memory, and network resources. Our case study demonstrates COMET's utility in identifying promising architectural optimization directions and guiding system designers in configuring key model and cluster parameters.
translated by 谷歌翻译
随着深度学习模型的速度较大,需要进行大型型号培训的系统级解决方案。我们展示了Amazon Sagemaker模型并行性,这是一个与Pytorch集成的软件库,并且可以使用模型并行性和其他内存节省功能轻松培训大型模型。与现有解决方案相比,Sagemaker库的实现更通用,灵活,因为它可以自动分区和运行具有最小代码的任意模型架构上的管道并行性,并且还为张量并行度提供一般和可扩展的框架,它支持更广泛的用例,并且可以轻松应用于新培训脚本的模块化。该库还将本机Pytorch用户体验保留到更大的程度,支持模块重复使用和动态图形,同时让用户完全控制训练步骤的细节。我们评估GPT-3,Roberta,BERT和神经协作过滤的性能,并表现出对现有解决方案的竞争性能。
translated by 谷歌翻译
近年来,Experts(MOE)的混合物已成为一种有前途的深度学习技术,可以将模型能力扩展为万亿多个参数,同时通过稀疏计算降低计算成本。虽然MoE开设了一个非常大的模型的新领域,但由于MOE的动态性质与系统的静态平行性/管道层之间的不匹配,因此其数以千计的GPU的实现受到限制。我们提出了Tutel,这是一种具有动态自适应并行性和管道的高度可扩展的堆栈设计和实现。 TUTEL在运行时提供自适应并行性切换和自适应管道,分别达到1.74倍和2.00倍的单MOE层加速度。我们还提出了一种用于MOE通信速度的新颖的二维层次结构算法,该算法的表现超过了2,048 GPU的先前最先前的最新时间。 Tutel汇总了所有技术,最终在16 GPU和2,048 GPU上分别提供了4.96倍和5.75倍的加速度,分别通过Fairseq:Meta的Facebook AI AI研究序列到序列工具Kit(Tutel(Tutel)(Tutel)(Tutel)(现在由Fairseq部分采用)。 Tutel源代码可在公共场所获得:https://github.com/microsoft/tutel。我们的评估表明,Tutel有效,有效地运行了一个基于现实的MOE模型,名为Swinv2-Moe,建立在Swin Transformer V2上,这是一种最先进的计算机视觉体系结构。在效率方面,Tutel加速了Swinv2-MoE,在FairSeq的训练和推理中分别达到1.55倍和2.11倍的速度。关于有效性,SWINV2-MOE模型在预训练和下游计算机视觉任务(例如可可对象检测)方面都比对应的密度密度模型都达到了卓越的精度,这表明Tutel准备对端到端现实世界模型训练的准备就绪和推理。 Swinv2-Moe在https://github.com/microsoft/swin-transformer中开放。
translated by 谷歌翻译
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. Tensor-Flow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, generalpurpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that Tensor-Flow achieves for several real-world applications.
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译
气候变化所扩大的极端天气正在造成全球日益毁灭性的影响。由于高计算成本和严格的时间到解决方案限制,目前基于物理的数值天气预测(NWP)的使用限制了精度。我们报告说,数据驱动的深度学习地球系统模拟器Fourcastnet可以预测全球天气,并在接近最先进的准确性的同时,比NWP更快地产生五个量子的预测。四个超级计算系统(Selene,Perlmutter和Juwels Booster高达3,808 nvidia a100 GPU)在三个超级计算系统上进行了优化,并有效地缩放,并在混合精度中获得140.8 PETAFLOPS(该规模的峰值为11.9%)。在3,072GPU上在Juwels Booster上测量的训练四界的时间到达的时间为67.4分钟,相对于最新的NWP,在推理中,相对于最先进的NWP的时间更快。 Fourcastnet提前一周可产生准确的瞬时天气预测,使巨大的合奏更好地捕捉了极端天气,并支持更高的全球预测决议。
translated by 谷歌翻译
基础模型正在成为主要的深度学习技术。由于模型参数和训练数据集的大规模,预处理基础模型始终耗时。除了计算密集型外,培训过程还非常密集和沟通密集。这些功能使得需要应用3D并行性,该平行性整合数据并行性,管道模型并行性和张量模型并行性,以实现高训练效率。为了实现这一目标,开发了一些自定义软件框架,例如Megatron-LM和DeepSpeed。但是,当前的3D平行框架仍然符合两个问题:i)它们对模型开发人员不透明,这些开发人员需要手动修改模型以并行化培训。 ii)它们对计算,GPU存储器和网络带宽的利用不足。我们提出了Merak,这是一个自动化的3D并行性深度学习培训框架,并具有高度资源利用。 Merak会自动使用自动模型分区仪部署,该分区仪在模型的代理表示上使用图形sharding算法。 Merak还提出了非侵入性的API,用于通过最小的代码修改来扩展基础模型培训。此外,我们在Merak设计了高性能的3D平行运行时引擎。它使用多种技术来利用可用的培训资源,包括移动的关键路径管道时间表,该计划带来了更高的计算利用率,阶段感知的重新计算,可利用空闲工作者的记忆以及子额定张量的模型并行性,这些模型并联与通信和计算重叠。 64 GPU的实验显示,Merak可以加快在最新的3D平行性框架上,具有1.5、2.5、8.3和20亿的模型框架,最高可达1.42x,1.39x,1.43x和1.61 x分别。
translated by 谷歌翻译