我们通过在调整方案中找到有效的相似性测量,提出了一种朝向弦景观的真空退化问题的新方法。使用一百万个Calabi-yau歧管作为具体例子,少量机器学习和暹罗神经网络的范式代表它们作为R(3)的点,其中两个歧管之间的相似度得分是它们之间的欧几里德距离r(3)代表。使用这些方法,我们可以通过仅在几百个数据点上进行培训,将搜索空间压缩以获得极度罕见的歧管,以百分比在原始数据的一个百分比内。我们还展示了如何应用这些方法来表征真空代表的“典型性”。
translated by 谷歌翻译
通用的完整交叉点Calabi-yau歧管(GCICY)是最近建立的卡拉比(Calabi-Yau)歧管的新结构。但是,使用标准代数方法的新GCICY产生非常费力。由于这种复杂性,GCICYS及其分类的数量仍然未知。在本文中,我们尝试使用神经网络在这个方向上取得一些进展。结果表明,我们训练有素的型号可以对文献中现有类型的$(1,1)$(1,1)$(1,1)$(1,1)$(2,1)$ GCICYS具有很高的精度。此外,他们可以在预测新的GCICY方面获得$ 97 \%$的精度,这与用于培训和测试的产品不同。这表明机器学习可能是分类和生成新GCICE的有效方法。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
我们越早努力计算Calabi-yau歧管的切线空间协调尺寸的努力使用深度学习。在本文中,我们考虑所有Calabi-yau四折的数据集,构建为投影空间的产品中的完整交叉点。采用最先进的计算机视觉架构启发的神经网络,我们改进了早期的基准,并证明所有四个非琐碎的霍奇格数可以使用多任务架构同时学习。30%(80%)培训率,我们达到$ H ^ {(1,1)} $的准确性为100%,以H ^ {(2,1)} $(两者为100%),81%(96%)为$ h ^ {(3,1)} $,49%(83%)为$ h ^ {(2,2)} $。假设欧拉数是已知的,因为它易于计算,并且考虑到从指数计算引起的线性约束,我们得到100%的总精度。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
持续的同源性(PH)是拓扑数据分析中最流行的方法之一。尽管PH已用于许多不同类型的应用程序中,但其成功背后的原因仍然难以捉摸。特别是,尚不知道哪种类别的问题最有效,或者在多大程度上可以检测几何或拓扑特征。这项工作的目的是确定pH在数据分析中比其他方法更好甚至更好的问题。我们考虑三个基本形状分析任务:从形状采样的2D和3D点云中检测孔数,曲率和凸度。实验表明,pH在这些任务中取得了成功,超过了几个基线,包括PointNet,这是一个精确地受到点云的属性启发的体系结构。此外,我们观察到,pH对于有限的计算资源和有限的培训数据以及分布外测试数据,包括各种数据转换和噪声,仍然有效。
translated by 谷歌翻译
使用完全连接的前馈神经网络,我们研究了一类Calabi - yau歧管的拓扑不变,该歧管构建为与来自Kreuzer - Skarke数据库的反复多粒子相关的扭曲品种中的过度迹象。特别是,我们发现可以在从多特偶联及其双重中提取的有限数据方面可以了解的欧拉数的简单表达式。
translated by 谷歌翻译
Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to wellinformed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
我们讨论集群分析的拓扑方面,并表明在聚类之前推断数据集的拓扑结构可以大大增强群集检测:理论论证和经验证据表明,聚类嵌入向量,代表数据歧管的结构,而不是观察到的特征矢量他们自己是非常有益的。为了证明,我们将流形学习方法与基于密度的聚类方法DBSCAN结合了歧管学习方法UMAP。合成和真实数据结果表明,这既简化和改善了多种低维问题,包括密度变化和/或纠缠形状的群集。我们的方法简化了聚类,因为拓扑预处理始终降低DBSCAN的参数灵敏度。然后,用dbscan聚类所得的嵌入可以超过诸如spectacl和clustergan之类的复杂方法。最后,我们的调查表明,聚类中的关键问题似乎不是数据的标称维度或其中包含多少不相关的功能,而是\ textIt {可分离}群集在环境观察空间中的\ textit {可分离},它们嵌入了它们中。 ,通常是数据特征定义的(高维)欧几里得空间。我们的方法之所以成功,是因为我们将数据投影到更合适的空间后,从某种意义上说,我们执行了群集分析。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
我们研究由线性卷积神经网络(LCN)代表的功能家族。这些函数形成了从输入空间到输出空间的线性地图集的半代数子集。相比之下,由完全连接的线性网络表示的函数家族形成代数集。我们观察到,LCN代表的功能可以通过接受某些因素化的多项式来识别,我们使用此视角来描述网络体系结构对所得功能空间几何形状的影响。我们进一步研究了在LCN上的目标函数的优化,分析了功能空间和参数空间中的临界点,并描述了梯度下降的动态不变性。总体而言,我们的理论预测,LCN的优化参数通常对应于跨层的重复过滤器,或可以分解为重复过滤器的过滤器。我们还进行了数值和符号实验,以说明我们的结果,并对小体系结构的景​​观进行深入分析。
translated by 谷歌翻译
我们使用深神经网络来机器学习各种尺寸的结不变之间的相关性。感兴趣的三维不变性是琼斯多项式$ j(q)$,四维不变性是khovanov多项式$ \ text {kh}(q,t)$,平滑的切片属$ g $,以及拉斯穆森的$ s $-invariant。我们发现双层前馈神经网络可以从$ \ text {kh}(q,-q ^ {-4})$大于99美元的$准确性。通过现在的DISPROVER骑士移动猜想,在结理论中存在对这种性能的理论解释,这些表现在我们的数据集中的所有结遵守。更令人惊讶的是,我们发现类似于$ \ text {kh}(q,-q ^ {-2})$的类似表现,这表明Khovanov与李同源理论之间的新关系。网络从$ \ text {kh}(q,t)$以同样高的准确度预测到$ g $,我们讨论了机器学习$ s $的程度,而不是$ g $,因为有一般不平等$ | S | \ Leq 2G $。 Jones多项式作为三维不变性,并不明显与$ S $或$ G $相关,但网络从$ j(q)$之前预测,网络达到大于95美元的$准确性。此外,通过在统一的根部评估$ j(q)$来实现类似的准确度。这表明与SU(2)$ CHERN-SIMONS理论的关系,我们审查了Khovanov同源性的仪表理论建设,这可能与解释网络的性能相关。
translated by 谷歌翻译
聚类算法的全面基准是困难的两个关键因素:(i)〜这种无监督的学习方法的独特数学定义和(ii)〜某些聚类算法采用的生成模型或群集标准之间的依赖性的依赖性内部集群验证。因此,对严格基准测试的最佳做法没有达成共识,以及是否有可能在给定申请的背景之外。在这里,我们认为合成数据集必须继续在群集算法的评估中发挥重要作用,但这需要构建适当地涵盖影响聚类算法性能的各种属性集的基准。通过我们的框架,我们展示了重要的角色进化算法,以支持灵活的这种基准,允许简单的修改和扩展。我们说明了我们框架的两种可能用途:(i)〜基准数据的演变与一组手派生属性和(ii)〜生成梳理给定对算法之间的性能差异的数据集。我们的作品对设计集群基准的设计具有足够挑战广泛算法的集群基准,并进一步了解特定方法的优势和弱点。
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
大多数维度降低方法采用频域表示,从基质对角线化获得,并且对于具有较高固有维度的大型数据集可能不会有效。为了应对这一挑战,相关的聚类和投影(CCP)提供了一种新的数据域策略,不需要解决任何矩阵。CCP将高维特征分配到相关的群集中,然后根据样本相关性将每个集群中的特征分为一个一维表示。引入了残留相似性(R-S)分数和索引,Riemannian歧管中的数据形状以及基于代数拓扑的持久性Laplacian进行可视化和分析。建议的方法通过与各种机器学习算法相关的基准数据集验证。
translated by 谷歌翻译
拓扑数据分析(TDA)是来自数据科学和数学的工具,它开始在环境科学领域引起波浪。在这项工作中,我们寻求对TDA工具的直观且可理解的介绍,该工具对于分析图像(即持续存在同源性)特别有用。我们简要讨论理论背景,但主要关注理解该工具的输出并讨论它可以收集的信息。为此,我们围绕着一个指导示例进行讨论,该指导示例是对RASP等人研究的糖,鱼类,花朵和砾石数据集进行分类。 al。 2020年(Arxiv:1906:01906)。我们证明了如何使用简单的机器学习算法来获得良好的结果,并详细探讨了如何用图像级特征来解释这种行为。持续同源性的核心优势之一是它的解释性是可解释的,因此在本文中,我们不仅讨论了我们发现的模式,而且要考虑到为什么我们对持续性同源性理论的了解,因此可以期待这些结果。我们的目标是,本文的读者将更好地了解TDA和持续的同源性,能够确定自己的问题和数据集,为此,持续的同源性可能会有所帮助,并从应用程序中获得对结果的理解包括GitHub示例代码。
translated by 谷歌翻译