深度学习进展到几乎所有医疗领域中最重要的技术之一。特别是在与医学成像有关的领域中,它起着重要作用。然而,在介入放疗(近距离放射治疗)中,深度学习仍处于早期阶段。在这篇综述中,首先,我们研究并审查了深度学习在介入放射疗法和直接相关领域的所有过程中的作用。此外,我们总结了最新的发展。为了重现深度学习算法的结果,必须提供源代码和培训数据。因此,这项工作的第二个重点是分析开源,开放数据和开放模型的可用性。在我们的分析中,我们能够证明深度学习在某些介入放射疗法领域已经起着主要作用,但在其他方面仍然很少出现。然而,随着年份的影响,它的影响正在增加,部分自我推广,但也受到密切相关领域的影响。开源,数据和模型的数量正在增长,但仍然很少,并且在不同的研究小组之间分布不均。不愿发布代码,数据和模型限制了可重复性,并将评估限制为单一机构数据集。总结,深度学习将积极改变介入放射疗法的工作流程,但是在可再现的结果和标准化评估方法方面,有改进的余地。
translated by 谷歌翻译
在医学中,图像注册对于图像引导的干预措施和其他临床应用至关重要。但是,很难解决,通过机器学习的出现,最近在该领域的医疗图像注册方面已经取得了很大的进步。深度神经网络的实施为某些医学应用提供了机会,例如在更少的时间内进行图像注册,以高精度,在操作过程中对抗肿瘤中发挥关键作用。当前的研究对基于无监督的深神经网络的医学图像注册研究的最新文献进行了全面的范围审查,其中包括到本领域在此日期中发表的所有相关研究。在这里,我们试图总结医学领域中无监督的基于深度学习的注册方法的最新发展和应用。在当前的全面范围审查中,精心讨论和传达了基本和主要概念,技术,从不同观点,新颖性和未来方向的统计分析。此外,这篇评论希望帮助那些被这一领域铆接的活跃读者深入了解这一激动人心的领域。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
早期发现阿尔茨海默氏病对于部署干预措施和减慢疾病进展至关重要。在过去的十年中,已经探索了许多机器学习和深度学习算法,目的是为阿尔茨海默氏症建立自动检测。数据增强技术和先进的深度学习体系结构的进步已经在该领域开辟了新的边界,研究正在快速发展。因此,这项调查的目的是概述有关阿尔茨海默氏病诊断深度学习模型的最新研究。除了对众多数据源,神经网络架构以及常用的评估措施进行分类外,我们还对实施和可重复性进行了分类。我们的目标是协助感兴趣的研究人员跟上最新的发展,并将早期的调查作为基准。此外,我们还指出了该主题的未来研究方向。
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
计算机辅助方法为诊断和预测脑疾病显示了附加的价值,因此可以支持临床护理和治疗计划中的决策。本章将洞悉方法的类型,其工作,输入数据(例如认知测试,成像和遗传数据)及其提供的输出类型。我们将专注于诊断的特定用例,即估计患者的当前“状况”,例如痴呆症的早期检测和诊断,对脑肿瘤的鉴别诊断以及中风的决策。关于预测,即对患者的未来“状况”的估计,我们将缩小用例,例如预测多发性硬化症中的疾病病程,并预测脑癌治疗后患者的结局。此外,根据这些用例,我们将评估当前的最新方法,并强调当前对这些方法进行基准测试的努力以及其中的开放科学的重要性。最后,我们评估了计算机辅助方法的当前临床影响,并讨论了增加临床影响所需的下一步。
translated by 谷歌翻译
癌症是全球死亡的主要原因之一。快速安全的早期,术中和术中诊断可以显着有助于成功的癌症识别和治疗。在过去的15年中,人工智能在增强癌症诊断技术方面发挥了越来越多的作用。这篇评论涵盖了在MRI和CT等良好技术中人工智能应用的进步。此外,它显示出高潜力以及基于光谱的方法,这些方法正在开发用于移动,超快速和低侵入性诊断的方法。我将展示基于光谱的方法如何通过使薄薄或甲莫妥蛋白和欧洲蛋白染色过时来减少组织制备进行病理分析的时间。我将介绍用于快速和低侵入性前和体内组织分类的光谱工具的例子,以确定肿瘤及其边界。另外,我将讨论与MRI和CT相反,光谱测量不需要化学剂来提高癌症成像的质量,这有助于开发更安全的诊断方法。总体而言,我们将看到,光谱和人工智能的结合构成了一个非常有前途且快速发展的医疗技术领域,它将很快增加可用的癌症诊断方法。
translated by 谷歌翻译
深度学习属于人工智能领域,机器执行通常需要某种人类智能的任务。类似于大脑的基本结构,深度学习算法包括一种人工神经网络,其类似于生物脑结构。利用他们的感官模仿人类的学习过程,深入学习网络被送入(感官)数据,如文本,图像,视频或声音。这些网络在不同的任务中优于最先进的方法,因此,整个领域在过去几年中看到了指数增长。这种增长在过去几年中每年超过10,000多种出版物。例如,只有在医疗领域中的所有出版物中覆盖的搜索引擎只能在Q3 2020中覆盖所有出版物的子集,用于搜索术语“深度学习”,其中大约90%来自过去三年。因此,对深度学习领域的完全概述已经不可能在不久的将来获得,并且在不久的将来可能会难以获得难以获得子场的概要。但是,有几个关于深度学习的综述文章,这些文章专注于特定的科学领域或应用程序,例如计算机愿景的深度学习进步或在物体检测等特定任务中进行。随着这些调查作为基础,这一贡献的目的是提供对不同科学学科的深度学习的第一个高级,分类的元调查。根据底层数据来源(图像,语言,医疗,混合)选择了类别(计算机愿景,语言处理,医疗信息和其他工程)。此外,我们还审查了每个子类别的常见架构,方法,专业,利弊,评估,挑战和未来方向。
translated by 谷歌翻译
动机:医学图像分析涉及帮助医师对病变或解剖结构进行定性和定量分析的任务,从而显着提高诊断和预后的准确性和可靠性。传统上,这些任务由医生或医学物理学家完成,并带来两个主要问题:(i)低效率; (ii)受个人经验的偏见。在过去的十年中,已经应用了许多机器学习方法来加速和自动化图像分析过程。与受监督和无监督的学习模型的大量部署相比,在医学图像分析中使用强化学习的尝试很少。这篇评论文章可以作为相关研究的垫脚石。意义:从我们的观察结果来看,尽管近年来增强学习逐渐增强了动力,但医学分析领域的许多研究人员发现很难理解和部署在诊所中。一个原因是缺乏组织良好的评论文章,针对缺乏专业计算机科学背景的读者。本文可能没有提供医学图像分析中所有强化学习模型的全面列表,而是可以帮助读者学习如何制定和解决他们的医学图像分析研究作为强化学习问题。方法和结果:我们从Google Scholar和PubMed中选择了已发表的文章。考虑到相关文章的稀缺性,我们还提供了一些出色的最新预印本。根据图像分析任务的类型对论文进行仔细审查和分类。我们首先回顾了强化学习的基本概念和流行模型。然后,我们探讨了增强学习模型在具有里程碑意义的检测中的应用。最后,我们通过讨论审查的强化学习方法的局限性和可能的​​改进来结束这篇文章。
translated by 谷歌翻译
肺癌近年来一直是最普遍的疾病之一。根据该领域的研究,每年在美国确定超过20万个案件。不受控制的繁殖和肺细胞的生长导致恶性肿瘤形成。最近,深入学习算法,特别是卷积神经网络(CNN),已成为自动诊断疾病的高级方式。本文的目的是审查不同的模型,导致诊断早期肺癌的不同准确性和敏感性,并帮助该领域的医生和研究人员。这项工作的主要目的是确定基于深度学习的肺癌存在的挑战。经过系统地编写了调查,这些调查结合了定期的映射和文献综述,从2016年到2021年审查该领域的32次会议和期刊文章。在分析和审查条款后,正在回答条款中提出的问题。由于对相关文章的完全审查和系统化,本领域,这项研究优于该领域的其他综述文章。
translated by 谷歌翻译
数据已成为当今世界上最有价值的资源。随着数据驱动算法的大量扩散,例如基于深度学习的方法,数据的可用性引起了极大的兴趣。在这种情况下,特别需要高质量的培训,验证和测试数据集。体积数据是医学中非常重要的资源,因为它范围从疾病诊断到治疗监测。如果数据集足够,则可以培训模型来帮助医生完成这些任务。不幸的是,在某些情况和应用程序中,大量数据不可用。例如,在医疗领域,罕见疾病和隐私问题可能导致数据可用性受到限制。在非医学领域,获得足够数量的高质量数据的高成本也可能引起人们的关注。解决这些问题的方法可能是生成合成数据,以结合其他更传统的数据增强方法来执行数据增强。因此,关于3D生成对抗网络(GAN)的大多数出版物都在医疗领域内。生成现实合成数据的机制的存在是克服这一挑战的好资产,尤其是在医疗保健中,因为数据必须具有良好的质量并且接近现实,即现实,并且没有隐私问题。在这篇综述中,我们提供了使用GAN生成现实的3D合成数据的作品的摘要。因此,我们概述了具有共同体系结构,优势和缺点的这些领域中基于GAN的方法。我们提出了一种新颖的分类学,评估,挑战和研究机会,以提供医学和其他领域甘恩当前状态的整体概述。
translated by 谷歌翻译
机器学习在医学图像分析中发挥着越来越重要的作用,产卵在神经影像症的临床应用中的新进展。之前有一些关于机器学习和癫痫的综述,它们主要专注于电生理信号,如脑电图(EEG)和立体脑电图(SEENG),同时忽略癫痫研究中神经影像的潜力。 NeuroImaging在确认癫痫区域的范围内具有重要的优点,这对于手术后的前诊所评估和评估至关重要。然而,脑电图难以定位大脑中的准确癫痫病变区。在这篇综述中,我们强调了癫痫诊断和预后在癫痫诊断和预后的背景下神经影像学和机器学习的相互作用。我们首先概述癫痫诊所,MRI,DWI,FMRI和PET中使用的癫痫和典型的神经影像姿态。然后,我们在将机器学习方法应用于神经影像数据的方法:i)将手动特征工程和分类器的传统机器学习方法阐述了两种方法,即卷积神经网络和自动化器等深度学习方法。随后,详细地研究了对癫痫,定位和横向化任务等分割,本地化和横向化任务的应用,以及与诊断和预后直接相关的任务。最后,我们讨论了目前的成就,挑战和潜在的未来方向,希望为癫痫的计算机辅助诊断和预后铺平道路。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
Delineation of the left ventricular cavity, myocardium and right ventricle from cardiac magnetic resonance images (multi-slice 2D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly-available and fully-annotated dataset for the purpose of Cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification O. Bernard and F. Cervenansky are with the
translated by 谷歌翻译
组织学图像中核和腺体的实例分割是用于癌症诊断,治疗计划和生存分析的计算病理学工作流程中的重要一步。随着现代硬件的出现,大规模质量公共数据集的最新可用性以及社区组织的宏伟挑战已经看到了自动化方法的激增,重点是特定领域的挑战,这对于技术进步和临床翻译至关重要。在这项调查中,深入分析了过去五年(2017-2022)中发表的原子核和腺体实例细分的126篇论文,进行了深入分析,讨论了当前方法的局限性和公开挑战。此外,提出了潜在的未来研究方向,并总结了最先进方法的贡献。此外,还提供了有关公开可用数据集的概括摘要以及关于说明每种挑战的最佳性能方法的巨大挑战的详细见解。此外,我们旨在使读者现有研究的现状和指针在未来的发展方向上开发可用于临床实践的方法,从而可以改善诊断,分级,预后和癌症的治疗计划。据我们所知,以前没有工作回顾了朝向这一方向的组织学图像中的实例细分。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
视网膜光学相干断层扫描(OCT)和光学相干断层扫描(OCTA)是(早期)诊断阿尔茨海默氏病(AD)的有前途的工具。这些非侵入性成像技术比替代神经影像工具更具成本效益,更容易获得。但是,即使对于训练有素的从业人员来说,解释和分类OCT设备进行的多层扫描也是耗时和挑战。关于机器学习和深度学习方法的调查,涉及对诸如青光眼等各种疾病的OCT扫描自动分析。但是,目前的文献缺乏对使用OCT或OCTA诊断阿尔茨海默氏病或​​认知障碍的广泛调查。这促使我们进行了针对需要介绍该问题的机器/深度学习科学家或从业者的全面调查。本文包含1)对阿尔茨海默氏病和认知障碍的医学背景介绍及其使用OCT和八八片成像方式的诊断,2)从自动分析的角度审查有关该问题的各种技术建议和子问题的回顾,3 )对最近的深度学习研究和可用的OCT/OCTA数据集的系统综述,旨在诊断阿尔茨海默氏病和认知障碍。对于后者,我们使用发布或灭亡软件来搜索来自Scopus,PubMed和Web Science等各种来源的相关研究。我们遵循PRISMA方法筛选了3073参考的初始库,并确定了直接针对AD诊断的十项相关研究(n = 10,3073分)。我们认为缺乏开放的OCT/OCTA数据集(关于阿尔茨海默氏病)是阻碍该领域进展的主要问题。
translated by 谷歌翻译
全身动态PET中的受试者运动引入了框架间的不匹配,并严重影响参数成像。传统的非刚性注册方法通常在计算上是强度且耗时的。深度学习方法在快速速度方面实现高精度方面是有希望的,但尚未考虑示踪剂分布变化或整体范围。在这项工作中,我们开发了一个无监督的自动深度学习框架,以纠正框架间的身体运动。运动估计网络是一个卷积神经网络,具有联合卷积长的短期记忆层,充分利用动态的时间特征和空间信息。我们的数据集在90分钟的FDG全身动态PET扫描中包含27个受试者。与传统和深度学习基线相比,具有9倍的交叉验证,我们证明了拟议的网络在增强的定性和定量空间对齐方面获得了卓越的性能在显着降低参数拟合误差中。我们还展示了拟议的运动校正方法的潜力来影响对估计参数图像的下游分析,从而提高了将恶性与良性多代谢区域区分开的能力。一旦受过培训,我们提出的网络的运动估计推理时间比常规注册基线快460倍,表明其潜力很容易应用于临床环境中。
translated by 谷歌翻译