我们考虑了贝叶斯的预测汇总模型,在观察了关于未知二进制事件的私人信号之后,$ n $专家向校长报告了有关事件的后验信念,然后将报告汇总为事件的单个预测。专家的信号和事件的结果遵循校长未知的联合分配,但校长可以访问I.I.D.来自分布的“样本”,每个样本都是专家报告的元组(不是信号)和事件的实现。使用这些样品,主要目的是找到$ \ varepsilon $ - 易于最佳(贝叶斯)聚合器。我们研究此问题的样本复杂性。我们表明,对于任意离散分布,样本的数量必须至少为$ \ tilde \ omega(m^{n-2} / \ varepsilon)$,其中$ m $是每个专家信号空间的大小。该样本复杂性在专家$ n $的数量中成倍增长。但是,如果专家的信号是独立的,以实现事件的实现为条件,那么样本复杂性将大大降低到$ \ tilde o(1 / \ varepsilon^2)$,这不取决于$ n $。
translated by 谷歌翻译
聚集专家预测的问题在宽范围内普遍存在的机器学习,经济学,气候科学以及国家安全。尽管如此,我们对这个问题的理论理解相当浅薄。本文启动了在从广泛的信息结构上对专家知识选择专家知识的背景下的预测聚集。虽然在全面地处于完全普遍的情况下,无法实现非竞争性能保证,但我们表明,在我们呼叫\ emph {投影替代}的专家信息结构的条件下,我们可以做到这一点。投影替代条件是信息替代品的概念:越来越减少边际回报以学习专家的信号。我们表明,根据投影替代条件,专家预测的平均值就基本上提高了信任随机专家的战略。然后,我们考虑更允许的设置,其中聚合器可以访问先前。我们展示了通过平均专家预测,然后通过将其从前恒定的持续因素移动到之前的平均值来表明,这一增殖器的性能保证基本上比可能的情况更好。我们的结果为过去的极端化的实证研究提供了理论基础,并有助于向极端化的适当金额提供指导。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
我们研究了测试有序域上的离散概率分布是否是指定数量的垃圾箱的直方图。$ k $的简洁近似值的最常见工具之一是$ k $ [n] $,是概率分布,在一组$ k $间隔上是分段常数的。直方图测试问题如下:从$ [n] $上的未知分布中给定样品$ \ mathbf {p} $,我们想区分$ \ mathbf {p} $的情况从任何$ k $ - 组织图中,总变化距离的$ \ varepsilon $ -far。我们的主要结果是针对此测试问题的样本接近最佳和计算有效的算法,以及几乎匹配的(在对数因素内)样品复杂性下限。具体而言,我们表明直方图测试问题具有样品复杂性$ \ widetilde \ theta(\ sqrt {nk} / \ varepsilon + k / \ varepsilon^2 + \ sqrt {n} / \ varepsilon^2)$。
translated by 谷歌翻译
我们重新审视耐受分发测试的问题。也就是说,给出来自未知分发$ P $超过$ \ {1,\ dots,n \} $的样本,它是$ \ varepsilon_1 $ -close到或$ \ varepsilon_2 $ -far从引用分发$ q $(总变化距离)?尽管过去十年来兴趣,但在极端情况下,这个问题很好。在无噪声设置(即,$ \ varepsilon_1 = 0 $)中,样本复杂性是$ \ theta(\ sqrt {n})$,强大的域大小。在频谱的另一端时,当$ \ varepsilon_1 = \ varepsilon_2 / 2 $时,样本复杂性跳转到勉强su​​blinear $ \ theta(n / \ log n)$。然而,非常少于中级制度。我们充分地表征了分发测试中的公差价格,作为$ N $,$ varepsilon_1 $,$ \ varepsilon_2 $,最多一个$ \ log n $ factor。具体来说,我们显示了\ [\ tilde \ theta \ left的样本复杂性(\ frac {\ sqrt {n}} {\ varepsilon_2 ^ {2}} + \ frac {n} {\ log n} \ cdot \ max \左\ {\ frac {\ varepsilon_1} {\ varepsilon_2 ^ 2},\ left(\ frac {\ varepsilon_1} {\ varepsilon_2 ^ 2} \右)^ {\!\!\!2} \ \ \} \右) ,\]提供两个先前已知的案例之间的顺利折衷。我们还为宽容的等价测试问题提供了类似的表征,其中$ p $和$ q $均未赘述。令人惊讶的是,在这两种情况下,对样本复杂性的主数量是比率$ \ varepsilon_1 / varepsilon_2 ^ 2 $,而不是更直观的$ \ varepsilon_1 / \ varepsilon_2 $。特别是技术兴趣是我们的下限框架,这涉及在以往的工作中处理不对称所需的新颖近似性理论工具,从而缺乏以前的作品。
translated by 谷歌翻译
We study the following independence testing problem: given access to samples from a distribution $P$ over $\{0,1\}^n$, decide whether $P$ is a product distribution or whether it is $\varepsilon$-far in total variation distance from any product distribution. For arbitrary distributions, this problem requires $\exp(n)$ samples. We show in this work that if $P$ has a sparse structure, then in fact only linearly many samples are required. Specifically, if $P$ is Markov with respect to a Bayesian network whose underlying DAG has in-degree bounded by $d$, then $\tilde{\Theta}(2^{d/2}\cdot n/\varepsilon^2)$ samples are necessary and sufficient for independence testing.
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
While many classical notions of learnability (e.g., PAC learnability) are distribution-free, utilizing the specific structures of an input distribution may improve learning performance. For example, a product distribution on a multi-dimensional input space has a much simpler structure than a correlated distribution. A recent paper [GHTZ21] shows that the sample complexity of a general learning problem on product distributions is polynomial in the input dimension, which is exponentially smaller than that on correlated distributions. However, the learning algorithm they use is not the standard Empirical Risk Minimization (ERM) algorithm. In this note, we characterize the sample complexity of ERM in a general learning problem on product distributions. We show that, even though product distributions are simpler than correlated distributions, ERM still needs an exponential number of samples to learn on product distributions, instead of a polynomial. This leads to the conclusion that a product distribution by itself does not make a learning problem easier -- an algorithm designed specifically for product distributions is needed.
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
我们重新审视量子状态认证的基本问题:给定混合状态$ \ rho \中的副本\ mathbb {c} ^ {d \ times d} $和混合状态$ \ sigma $的描述,决定是否$ \ sigma = \ rho $或$ \ | \ sigma - \ rho \ | _ {\ mathsf {tr}} \ ge \ epsilon $。当$ \ sigma $最大化时,这是混合性测试,众所周知,$ \ omega(d ^ {\ theta(1)} / \ epsilon ^ 2)$副本是必要的,所以确切的指数取决于测量类型学习者可以使[OW15,BCL20],并且在许多这些设置中,有一个匹配的上限[OW15,Bow19,BCL20]。可以避免这种$ d ^ {\ theta(1)} $依赖于某些类型的混合状态$ \ sigma $,例如。大约低等级的人?更常见地,是否存在一个简单的功能$ f:\ mathbb {c} ^ {d \ times d} \ to \ mathbb {r} _ {\ ge 0} $,其中一个人可以显示$ \ theta(f( \ sigma)/ \ epsilon ^ 2)$副本是必要的,并且足以就任何$ \ sigma $的国家认证?这种实例 - 最佳边界在经典分布测试的背景下是已知的,例如, [VV17]。在这里,我们为量子设置提供了这个性质的第一个界限,显示(达到日志因子),即使用非接受不连贯测量的状态认证的复杂性复杂性基本上是通过复制复杂性进行诸如$ \ sigma $之间的保真度的复杂性。和最大混合的状态。令人惊讶的是,我们的界限与经典问题的实例基本上不同,展示了两个设置之间的定性差异。
translated by 谷歌翻译
我们对解决几个自然学习问题的一通流算法所需的记忆量给出了下限。在$ \ {0,1 \}^d $中的示例的环境中,可以使用$ \ kappa $ bits对最佳分类器进行编码,我们表明,使用近距离数量的示例学习的算法,$ \ tilde o(\ kappa)$,必须使用$ \ tilde \ omega(d \ kappa)$空间。我们的空间界限与问题自然参数化的环境空间的维度相匹配,即使在示例和最终分类器的大小上是二次的。例如,在$ d $ -sparse线性分类器的设置中,$ \ kappa = \ theta(d \ log d)$,我们的空间下限是$ \ tilde \ omega(d^^^ 2)$。我们的边界与流长$ n $优雅地降级,通常具有$ \ tilde \ omega \ left(d \ kappa \ cdot \ frac \ frac {\ kappa} {n} {n} \ right)$。 $ \ omega(d \ kappa)$的形式的界限以学习奇偶校验和有限字段定义的其他问题而闻名。在狭窄的样本量范围内适用的边界也以线性回归而闻名。对于最近学习应用程序中常见的类型的问题,我们的第一个范围是适用于各种输入尺寸的问题。
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
We consider the problem of robustly testing the norm of a high-dimensional sparse signal vector under two different observation models. In the first model, we are given $n$ i.i.d. samples from the distribution $\mathcal{N}\left(\theta,I_d\right)$ (with unknown $\theta$), of which a small fraction has been arbitrarily corrupted. Under the promise that $\|\theta\|_0\le s$, we want to correctly distinguish whether $\|\theta\|_2=0$ or $\|\theta\|_2>\gamma$, for some input parameter $\gamma>0$. We show that any algorithm for this task requires $n=\Omega\left(s\log\frac{ed}{s}\right)$ samples, which is tight up to logarithmic factors. We also extend our results to other common notions of sparsity, namely, $\|\theta\|_q\le s$ for any $0 < q < 2$. In the second observation model that we consider, the data is generated according to a sparse linear regression model, where the covariates are i.i.d. Gaussian and the regression coefficient (signal) is known to be $s$-sparse. Here too we assume that an $\epsilon$-fraction of the data is arbitrarily corrupted. We show that any algorithm that reliably tests the norm of the regression coefficient requires at least $n=\Omega\left(\min(s\log d,{1}/{\gamma^4})\right)$ samples. Our results show that the complexity of testing in these two settings significantly increases under robustness constraints. This is in line with the recent observations made in robust mean testing and robust covariance testing.
translated by 谷歌翻译
部分可观察到的马尔可夫决策过程(POMDPS)是加强学习的自然和一般模型,以考虑到代理人对其当前国家的不确定性。在POMDPS的文献中,习惯性地假设在已知参数时计算最佳策略的规划Oracle,即使已知问题是计算的。几乎所有现有的规划算法都在指数时间内运行,缺乏可证明的性能保证,或者需要在每个可能的政策下对转换动态进行强烈的假设。在这项工作中,我们重新审视了规划问题并问:是否有自然和积极的假设,使计划变得容易?我们的主要结果是用于规划(一步)可观察POMDPS的QuasioInomial-time算法。具体而言,我们假设各国的分离良好的分布导致分开的观察分布,因此观察结果在每一步中至少有一些信息。至关重要的是,这个假设没有对POMDP的过渡动态的限制;尽管如此,它意味着近乎最佳的政策承认准简洁的描述,这通常不是真实的(在标准的硬度假设下)。我们的分析基于滤波器稳定性的新定量界限 - 即潜在状态的最佳滤波器的速率忘记其初始化。此外,在指数时间假设下,我们证明了在可观察POMDPS中规划的匹配硬度。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
我们研究了Massart噪声存在下PAC学习半空间的复杂性。在这个问题中,我们得到了I.I.D.标记的示例$(\ mathbf {x},y)\ in \ mathbb {r}^n \ times \ {\ pm 1 \} $,其中$ \ mathbf {x} $的分布是任意的,标签$ y y y y y y。 $是$ f(\ mathbf {x})$的MassArt损坏,对于未知的半空间$ f:\ mathbb {r}^n \ to \ to \ {\ pm 1 \} $,带有翻转概率$ \ eta(\ eta)(\ eta) Mathbf {x})\ leq \ eta <1/2 $。学习者的目的是计算一个小于0-1误差的假设。我们的主要结果是该学习问题的第一个计算硬度结果。具体而言,假设学习错误(LWE)问题(LWE)问题的(被认为是广泛的)超指定时间硬度,我们表明,即使最佳,也没有多项式时间MassArt Halfspace学习者可以更好地达到错误的错误,即使是最佳0-1错误很小,即$ \ mathrm {opt} = 2^{ - \ log^{c}(n)} $对于任何通用常数$ c \ in(0,1)$。先前的工作在统计查询模型中提供了定性上类似的硬度证据。我们的计算硬度结果基本上可以解决Massart Halfspaces的多项式PAC可学习性,这表明对该问题的已知有效学习算法几乎是最好的。
translated by 谷歌翻译
我们使用对单个的,相同的$ d $维状态的相同副本进行的测量来研究量子断层扫描和阴影断层扫描的问题。我们首先因Haah等人而重新审视已知的下限。 (2017年)在痕量距离上具有准确性$ \ epsilon $的量子断层扫描,当测量选择与先前观察到的结果无关(即它们是非适应性的)时。我们简要地证明了这一结果。当学习者使用具有恒定结果数量的测量值时,这会导致更强的下限。特别是,这严格确定了民间传说的最佳性``Pauli phymography''算法的样本复杂性。我们还得出了$ \ omega(r^2 d/\ epsilon^2)$和$ \ omega(r^2 d/\ epsilon^2)的新颖界限( R^2 d^2/\ epsilon^2)$用于学习排名$ r $状态,分别使用任意和恒定的结果测量,在非适应性情况下。除了样本复杂性,对于学习量子的实际意义,是一种实际意义的资源状态是算法使用的不同测量值的数量。我们将下限扩展到学习者从固定的$ \ exp(o(d))$测量的情况下进行自适应测量的情况。这特别意味着适应性。没有使用可有效实现的单拷贝测量结果给我们任何优势。在目标是预测给定的可观察到给定序列的期望值的情况下,我们还获得了类似的界限,该任务被称为阴影层析成像。在适应性的情况下单拷贝测量可通过多项式大小的电路实现,我们证明了基于计算给定可观察物的样本平均值的直接策略是最佳的。
translated by 谷歌翻译
在这项工作中,我们研究了鲁布利地学习Mallows模型的问题。我们给出了一种算法,即使其样本的常数分数是任意损坏的恒定分数,也可以准确估计中央排名。此外,我们的稳健性保证是无关的,因为我们的整体准确性不依赖于排名的替代品的数量。我们的工作可以被认为是从算法稳健统计到投票和信息聚集中的中央推理问题之一的视角的自然输注。具体而言,我们的投票规则是有效的可计算的,并且通过一大群勾结的选民无法改变其结果。
translated by 谷歌翻译