我们表明,从Gaussian内核函数的随机傅里叶功能重建内核矩阵的误差概率是大多数$ \ mathcal {o}(r ^ {2/3} \ exp(-d))$,其中$ d $随机功能的数量和$ r $是数据域的直径。我们还提供了一种无关的$ \ OMEGA的信息理论方法 - 无关的下限((1- \ exp(-R ^ 2))\ exp(-d))$。与事先工作相比,我们是第一个显示随机傅里叶特征的误差概率与数据点的维度无关。作为我们理论的应用,我们为内核Ridge回归和支持向量机获得尺寸无关的界限。
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
在本文中,我们研究了使用深丽升方法(DRM)和物理信息的神经网络(Pinns)从随机样品求解椭圆局部微分方程(PDE)的深度学习技术的统计限制。为了简化问题,我们专注于原型椭圆PDE:SCHR \“odinginger方程,具有零的Dirichlet边界条件,其在量子 - 机械系统中具有广泛的应用。我们为两种方法建立了上下界,通过快速速率泛化绑定并发地改善了这个问题的上限。我们发现当前的深ritz方法是次优的,提出修改版本。我们还证明了Pinn和DRM的修改版本可以实现Minimax SoboLev空间的最佳限制。经验上,近期工作表明,根据权力法,我们提供了培训训练的深层模型精度,我们提供了计算实验,以显示对深PDE求解器的尺寸依赖权力法的类似行为。
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
We propose a new method for estimating the minimizer $\boldsymbol{x}^*$ and the minimum value $f^*$ of a smooth and strongly convex regression function $f$ from the observations contaminated by random noise. Our estimator $\boldsymbol{z}_n$ of the minimizer $\boldsymbol{x}^*$ is based on a version of the projected gradient descent with the gradient estimated by a regularized local polynomial algorithm. Next, we propose a two-stage procedure for estimation of the minimum value $f^*$ of regression function $f$. At the first stage, we construct an accurate enough estimator of $\boldsymbol{x}^*$, which can be, for example, $\boldsymbol{z}_n$. At the second stage, we estimate the function value at the point obtained in the first stage using a rate optimal nonparametric procedure. We derive non-asymptotic upper bounds for the quadratic risk and optimization error of $\boldsymbol{z}_n$, and for the risk of estimating $f^*$. We establish minimax lower bounds showing that, under certain choice of parameters, the proposed algorithms achieve the minimax optimal rates of convergence on the class of smooth and strongly convex functions.
translated by 谷歌翻译
我们在随机特征矩阵的条件数上提供(高概率)界限。特别是,我们表明,如果复杂性比率$ \ frac {n} $ where $ n $是n $ with n $ wore $ n $是$ m $的数量,如$ \ log ^ {-1}( n)$或$ \ log(m)$,然后随机功能矩阵很好。该结果在没有正则化的情况下保持并且依赖于在随机特征矩阵的相关组件之间建立各种浓度界限。另外,我们在随机特征矩阵的受限等距常数上获得界限。我们证明了使用随机特征矩阵的回归问题相关的风险表现出双重下降现象,并且这是条件数的双缩小行为的效果。风险范围包括使用最小二乘问题的underParamedAimed设置和使用最小规范插值问题或稀疏回归问题的过次参数化设置。对于最小二乘或稀疏的回归案例,我们表明风险降低为$ M $和$ N $增加,即使在存在有限或随机噪声时也是如此。风险绑定与文献中的最佳缩放匹配,我们的结果中的常量是显式的,并且独立于数据的维度。
translated by 谷歌翻译
量化概率分布之间的异化的统计分歧(SDS)是统计推理和机器学习的基本组成部分。用于估计这些分歧的现代方法依赖于通过神经网络(NN)进行参数化经验变化形式并优化参数空间。这种神经估算器在实践中大量使用,但相应的性能保证是部分的,并呼吁进一步探索。特别是,涉及的两个错误源之间存在基本的权衡:近似和经验估计。虽然前者需要NN课程富有富有表现力,但后者依赖于控制复杂性。我们通过非渐近误差界限基于浅NN的基于浅NN的估计的估算权,重点关注四个流行的$ \ mathsf {f} $ - 分离 - kullback-leibler,chi squared,squared hellinger,以及总变异。我们分析依赖于实证过程理论的非渐近功能近似定理和工具。界限揭示了NN尺寸和样品数量之间的张力,并使能够表征其缩放速率,以确保一致性。对于紧凑型支持的分布,我们进一步表明,上述上三次分歧的神经估算器以适当的NN生长速率接近Minimax率 - 最佳,实现了对数因子的参数速率。
translated by 谷歌翻译
在本文中,我们开发了一种使用深神经网络(DNNS)的非组织和非线性时间序列的自适应非参数估计的一般理论。我们首先考虑两种类型的DNN估计量,非含糖和稀疏的DNN估计器,并为一般非平稳时间序列建立其泛化误差界限。然后,我们得出最小值下限,以估计属于一类非线性自回旋(AR)模型的平均功能,这些功能包括非线性通用添加剂AR,单个索引和阈值AR模型。在结果的基础上,我们表明稀疏的DNN估计量具有自适应性,并达到了许多非线性AR模型的最小最佳速率,直至多构型因子。通过数值模拟,我们证明了DNN方法在估计具有内在的低维结构和不连续或粗糙平均功能的非线性AR模型的有用性,这与我们的理论一致。
translated by 谷歌翻译
高斯平滑的最佳运输(GOT)框架,在Goldfeld等人开创。 (2020)并随后被一系列后续文件,在统计,机器学习,信息理论和相关领域的研究人员中迅速引起了注意。在其中做出的一个关键观察是,通过适应Get框架而不是其未平滑的对应物,可以提升用于使用经验测量来近似于近似真实数据生成分布的维度的诅咒。目前的论文表明,相关观察适用于离散指数家庭模型中非参数混合分布的估计,在Get成本下,非参数MLE的估计精度可以加速到多项式速率。这与基于无缝度量的经典子多项式速率鲜明对比,这不能从信息理论的角度来改进。我们分析中的一个关键步骤是建立高斯复杂的LipsChitz函数的新杰克逊型近似。这种洞察力弥补了分析非参数MLES和新的框架的现有技术。
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
We study non-parametric estimation of the value function of an infinite-horizon $\gamma$-discounted Markov reward process (MRP) using observations from a single trajectory. We provide non-asymptotic guarantees for a general family of kernel-based multi-step temporal difference (TD) estimates, including canonical $K$-step look-ahead TD for $K = 1, 2, \ldots$ and the TD$(\lambda)$ family for $\lambda \in [0,1)$ as special cases. Our bounds capture its dependence on Bellman fluctuations, mixing time of the Markov chain, any mis-specification in the model, as well as the choice of weight function defining the estimator itself, and reveal some delicate interactions between mixing time and model mis-specification. For a given TD method applied to a well-specified model, its statistical error under trajectory data is similar to that of i.i.d. sample transition pairs, whereas under mis-specification, temporal dependence in data inflates the statistical error. However, any such deterioration can be mitigated by increased look-ahead. We complement our upper bounds by proving minimax lower bounds that establish optimality of TD-based methods with appropriately chosen look-ahead and weighting, and reveal some fundamental differences between value function estimation and ordinary non-parametric regression.
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
我们提供了通过局部主成分分析估计切线空间和(光滑,紧凑)欧几里德子多元化的固定空间和固有尺寸所需的采样点数量的明确界限。我们的方法直接估计本地协方差矩阵,其同时允许估计切线空间和歧管的固有尺寸。关键争论涉及矩阵浓度不等式,是用于平坦化歧管的Wasserstein,以及关于Wassersein距离的协方差矩阵的Lipschitz关系。
translated by 谷歌翻译
当回归函数属于标准的平滑类时,由衍生物的单变量函数组成,衍生物到达$(\ gamma + 1)$ th由Action Anclople或Ae界定的常见常数,众所周知,最小的收敛速率均值平均错误(MSE)是$ \左(\ FRAC {\ SIGMA ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} {2 \ gamma + 3}} $ \伽玛$是有限的,样本尺寸$ n \ lightarrow \ idty $。从一个不可思议的观点来看,考虑有限$ N $,本文显示:对于旧的H \“较旧的和SoboLev类,最低限度最佳速率是$ \ frac {\ sigma ^ {2} \ left(\ gamma \ vee1 \右)$ \ frac {n} {\ sigma ^ {2}} \ precsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $和$ \ left(\ frac {\ sigma ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} $ \ r \ frac {n} {\ sigma ^ {2}}} \ succsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $。为了建立这些结果,我们在覆盖和覆盖号码上获得上下界限,以获得$ k的广义H \“较旧的班级$ th($ k = 0,...,\ gamma $)衍生物由上面的参数$ r_ {k} $和$ \ gamma $ th衍生物是$ r _ {\ gamma + 1} - $ lipschitz (以及广义椭圆形的平滑功能)。我们的界限锐化了标准类的古典度量熵结果,并赋予$ \ gamma $和$ r_ {k} $的一般依赖。通过在$ r_ {k} = 1 $以下派生MIMIMAX最佳MSE率,$ r_ {k} \ LEQ \ left(k-1 \右)!$和$ r_ {k} = k!$(与后两个在我们的介绍中有动机的情况)在我们的新熵界的帮助下,我们展示了一些有趣的结果,无法在文献中的现有熵界显示。对于H \“较旧的$ D-$变化函数,我们的结果表明,归一渐近率$ \左(\ frac {\ sigma ^ {2}} {n}右)^ {\ frac {2 \ Gamma + 2} {2 \ Gamma + 2 + D}} $可能是有限样本中的MSE低估。
translated by 谷歌翻译
我们研究了非参数脊的最小二乘的学习属性。特别是,我们考虑常见的估计人的估计案例,由比例依赖性内核定义,并专注于规模的作用。这些估计器内插数据,可以显示规模来通过条件号控制其稳定性。我们的分析表明,这是不同的制度,具体取决于样本大小,其尺寸与问题的平滑度之间的相互作用。实际上,当样本大小小于数据维度中的指数时,可以选择比例,以便学习错误减少。随着样本尺寸变大,总体错误停止减小但有趣地可以选择规模,使得噪声引起的差异仍然存在界线。我们的分析结合了概率,具有来自插值理论的许多分析技术。
translated by 谷歌翻译
我们在随机匪徒上使用时(协变量)信息时,我们研究了固定信道的最佳武器识别问题。虽然我们可以在每轮中使用上下文信息,但我们对在语境分布上的边缘化平均奖励感兴趣。我们的目标是在给定值的错误率下识别最少数量的采样。我们显示出问题的特定实例的示例复杂性下限。然后,我们提出了一个“跟踪和停止”策略的上下文知识版本,其中ARM的比例绘制追踪一组最佳分配,并证明预期的ARM绘制数与渐近的下限匹配。我们证明,与Garivier&Kaufmann(2016)的结果相比,可以使用上下文信息来提高最佳边缘化平均奖励的效率。我们通过实验证实了上下文信息有助于更快的最佳武器识别。
translated by 谷歌翻译
我们为在一般来源条件下的希尔伯特量表中的新型Tikhonov登记学习问题提供了最小的自适应率。我们的分析不需要在假设类中包含回归函数,并且最著名的是不使用传统的\ textit {先验{先验}假设。使用插值理论,我们证明了Mercer运算符的光谱可以在存在“紧密''$ l^{\ infty} $嵌入的存在的情况下,可以推断出合适的Hilbert鳞片的嵌入。我们的分析利用了新的傅立叶能力条件在某些参数制度中,修改后的Mercer运算符的最佳Lorentz范围空间。
translated by 谷歌翻译
三角形流量,也称为kn \“{o}的Rosenblatt测量耦合,包括用于生成建模和密度估计的归一化流模型的重要构建块,包括诸如实值的非体积保存变换模型的流行自回归流模型(真实的NVP)。我们提出了三角形流量统计模型的统计保证和样本复杂性界限。特别是,我们建立了KN的统计一致性和kullback-leibler估算器的rospblatt的kullback-leibler估计的有限样本会聚率使用实证过程理论的工具测量耦合。我们的结果突出了三角形流动下播放功能类的各向异性几何形状,优化坐标排序,并导致雅各比比流动的统计保证。我们对合成数据进行数值实验,以说明我们理论发现的实际意义。
translated by 谷歌翻译
给定$ n $数据点$ \ mathbb {r}^d $中的云,请考虑$ \ mathbb {r}^d $的$ m $ dimensional子空间预计点。当$ n,d $增长时,这一概率分布的集合如何?我们在零模型下考虑了这个问题。标准高斯矢量,重点是渐近方案,其中$ n,d \ to \ infty $,$ n/d \ to \ alpha \ in(0,\ infty)$,而$ m $是固定的。用$ \ mathscr {f} _ {m,\ alpha} $表示$ \ mathbb {r}^m $中的一组概率分布,在此限制中以低维度为单位,我们在此限制中建立了新的内部和外部界限$ \ mathscr {f} _ {m,\ alpha} $。特别是,我们将$ \ mathscr {f} _ {m,\ alpha} $的Wasserstein Radius表征为对数因素,并以$ M = 1 $确切确定它。我们还通过kullback-leibler差异和r \'{e} NYI信息维度证明了尖锐的界限。上一个问题已应用于无监督的学习方法,例如投影追求和独立的组件分析。我们介绍了与监督学习相关的相同问题的版本,并证明了尖锐的沃斯坦斯坦半径绑定。作为一个应用程序,我们在具有$ M $隐藏神经元的两层神经网络的插值阈值上建立了上限。
translated by 谷歌翻译