高斯平滑的最佳运输(GOT)框架,在Goldfeld等人开创。 (2020)并随后被一系列后续文件,在统计,机器学习,信息理论和相关领域的研究人员中迅速引起了注意。在其中做出的一个关键观察是,通过适应Get框架而不是其未平滑的对应物,可以提升用于使用经验测量来近似于近似真实数据生成分布的维度的诅咒。目前的论文表明,相关观察适用于离散指数家庭模型中非参数混合分布的估计,在Get成本下,非参数MLE的估计精度可以加速到多项式速率。这与基于无缝度量的经典子多项式速率鲜明对比,这不能从信息理论的角度来改进。我们分析中的一个关键步骤是建立高斯复杂的LipsChitz函数的新杰克逊型近似。这种洞察力弥补了分析非参数MLES和新的框架的现有技术。
translated by 谷歌翻译
量化概率分布之间的异化的统计分歧(SDS)是统计推理和机器学习的基本组成部分。用于估计这些分歧的现代方法依赖于通过神经网络(NN)进行参数化经验变化形式并优化参数空间。这种神经估算器在实践中大量使用,但相应的性能保证是部分的,并呼吁进一步探索。特别是,涉及的两个错误源之间存在基本的权衡:近似和经验估计。虽然前者需要NN课程富有富有表现力,但后者依赖于控制复杂性。我们通过非渐近误差界限基于浅NN的基于浅NN的估计的估算权,重点关注四个流行的$ \ mathsf {f} $ - 分离 - kullback-leibler,chi squared,squared hellinger,以及总变异。我们分析依赖于实证过程理论的非渐近功能近似定理和工具。界限揭示了NN尺寸和样品数量之间的张力,并使能够表征其缩放速率,以确保一致性。对于紧凑型支持的分布,我们进一步表明,上述上三次分歧的神经估算器以适当的NN生长速率接近Minimax率 - 最佳,实现了对数因子的参数速率。
translated by 谷歌翻译
生成的对抗网络(GAN)在无监督学习方面取得了巨大的成功。尽管具有显着的经验表现,但关于gan的统计特性的理论研究有限。本文提供了gan的近似值和统计保证,以估算具有H \“ {o} lder空间密度的数据分布。我们的主要结果表明,如果正确选择了生成器和鉴别器网络架构,则gan是一致的估计器在较强的差异指标下的数据分布(例如Wasserstein-1距离。 ,这不受环境维度的诅咒。我们对低维数据的分析基于具有Lipschitz连续性保证的神经网络的通用近似理论,这可能具有独立的兴趣。
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译
我们重新审视有限混合模型中最大似然估计量(MLE)的收敛速率的经典问题。 Wasserstein距离已成为分析这些模型参数估计的标准损耗函数,部分原因是其绕过标签切换的能力并准确地表征了具有消失权重的拟合混合物组件的行为。但是,Wasserstein距离只能捕获其余拟合混合物组件中最坏的案例收敛速率。我们证明,当对数似然函数受到惩罚以阻止消失的混合权重时,可以得出更强大的损失函数以解决Wasserstein距离的这种缺点。这些新的损失功能准确地捕获了拟合混合物组件的收敛速率的异质性,并且我们使用它们在各种混合模型中使用它们来锐化现有的侧重和均匀收敛速率。特别是,这些结果表明,受惩罚MLE的组成部分的子集通常比过去的工作预期的要快得多。我们进一步表明,其中一些结论扩展到了传统的MLE。我们的理论发现得到了一项模拟研究的支持,以说明这些改善的收敛速率。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
给定$ n $数据点$ \ mathbb {r}^d $中的云,请考虑$ \ mathbb {r}^d $的$ m $ dimensional子空间预计点。当$ n,d $增长时,这一概率分布的集合如何?我们在零模型下考虑了这个问题。标准高斯矢量,重点是渐近方案,其中$ n,d \ to \ infty $,$ n/d \ to \ alpha \ in(0,\ infty)$,而$ m $是固定的。用$ \ mathscr {f} _ {m,\ alpha} $表示$ \ mathbb {r}^m $中的一组概率分布,在此限制中以低维度为单位,我们在此限制中建立了新的内部和外部界限$ \ mathscr {f} _ {m,\ alpha} $。特别是,我们将$ \ mathscr {f} _ {m,\ alpha} $的Wasserstein Radius表征为对数因素,并以$ M = 1 $确切确定它。我们还通过kullback-leibler差异和r \'{e} NYI信息维度证明了尖锐的界限。上一个问题已应用于无监督的学习方法,例如投影追求和独立的组件分析。我们介绍了与监督学习相关的相同问题的版本,并证明了尖锐的沃斯坦斯坦半径绑定。作为一个应用程序,我们在具有$ M $隐藏神经元的两层神经网络的插值阈值上建立了上限。
translated by 谷歌翻译
Mixtures of regression are a powerful class of models for regression learning with respect to a highly uncertain and heterogeneous response variable of interest. In addition to being a rich predictive model for the response given some covariates, the parameters in this model class provide useful information about the heterogeneity in the data population, which is represented by the conditional distributions for the response given the covariates associated with a number of distinct but latent subpopulations. In this paper, we investigate conditions of strong identifiability, rates of convergence for conditional density and parameter estimation, and the Bayesian posterior contraction behavior arising in finite mixture of regression models, under exact-fitted and over-fitted settings and when the number of components is unknown. This theory is applicable to common choices of link functions and families of conditional distributions employed by practitioners. We provide simulation studies and data illustrations, which shed some light on the parameter learning behavior found in several popular regression mixture models reported in the literature.
translated by 谷歌翻译
我们研究一类弱识别的位置尺度混合模型,其中基于$ N $ i.d.d的最大似然估计。已知样品具有比经典$ N ^ { - \ frac {1} {2}} $错误的较低的精度。我们调查期望 - 最大化(EM)算法是否也会缓慢收敛这些模型。我们为EM提供了严格的表征,用于在一个单变量的环境中拟合弱识别的高斯混合物,其中我们证明EM算法以$ N ^ {\ FRAC {3} {4}} $步骤汇聚,并返回A处的估计欧几里德订单距离$ {n ^ { - \ frac {1} {8}}} $和$ {n ^ { - \ frac {1} {4}} {4}} {4}}分别从真实位置和比例参数。建立单变量环境中的缓慢速率需要具有两个阶段的新型本地化参数,每个阶段都涉及以人口水平应用于不同代理EM操作员的划分基于epoch的参数。我们展示了几种多元($ d \ geq 2 $)的例子,表现出与单变量案件相同的缓慢。当拟合协方差受到限制为身份的倍数时,我们还在特殊情况下在特殊情况下以更高的尺寸证明了更高的统计率。
translated by 谷歌翻译
素描的Wasserstein距离($ W^S $)是专门针对有限混合物分布的新概率距离。给定概率分布的集合$ \ MATHCAL {a} $定义的任何度量$ d $,$ w^s $定义为该指标的最判别凸扩展为space $ \ mathcal {s} = \ textrm {cons}(\ Mathcal {a})$ \ Mathcal {a} $的元素混合物的$。我们的表示定理表明,以这种方式构建的空间$(\ MATHCAL {S},w^s)$对$ \ MATHCAL {x} =(\ Mathcal {a},d)$的wasserstein空间是同构的。该结果为Wasserstein距离建立了普遍性,表明它们的特征是它们具有有限混合物的判别能力。我们利用此表示定理提出了基于Kantorovich--Rubenstein二元性的估计方法,并证明了一般定理,该定理表明其估计误差可以由任何估计混合物重量和混合物组件的误差的总和来限制。这些数量的估计器。在$ p $二维离散$ k $ -mixtures的情况下,我们得出了估计$ w^s $的尖锐统计属性,我们显示的可以估计的速率与$ \ sqrt {k/n} $,达到对数因素。我们对这些边界进行了互补,以估计$ k $ - 点度量空间上的分布之间的瓦斯汀距离的风险,这与我们的上限与对数因素相匹配。该结果是用于估计离散分布之间的Wasserstein距离的第一个接近最小的下限。此外,我们构造了混合物权重的$ \ sqrt {n} $渐变正常的估计器,并得出了我们$ w^s $的估计器的$ \ sqrt {n} $分布限制。仿真研究和数据分析为新素描的瓦斯汀距离的适用性提供了强有力的支持。
translated by 谷歌翻译
我们证明了连续和离散时间添加功能的浓度不平等和相关的PAC界限,用于可能是多元,不可逆扩散过程的无界函数。我们的分析依赖于通过泊松方程的方法,使我们能够考虑一系列非常广泛的指数性千古过程。这些结果增加了现有的浓度不平等,用于扩散过程的加性功能,这些功能仅适用于有界函数或从明显较小的类别中的过程的无限函数。我们通过两个截然不同的区域的例子来证明这些指数不平等的力量。考虑到在稀疏性约束下可能具有高维参数非线性漂移模型,我们应用连续的时间浓度结果来验证套索估计的受限特征值条件,这对于甲骨文不平等的推导至关重要。离散添加功能的结果用于研究未经调整的Langevin MCMC算法,用于采样中等重尾密度$ \ pi $。特别是,我们为多项式增长功能$ f $的样品蒙特卡洛估计量$ \ pi(f)提供PAC边界,以量化足够的样本和阶梯尺寸,以在规定的边距内近似具有很高的可能性。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
We propose a new method for estimating the minimizer $\boldsymbol{x}^*$ and the minimum value $f^*$ of a smooth and strongly convex regression function $f$ from the observations contaminated by random noise. Our estimator $\boldsymbol{z}_n$ of the minimizer $\boldsymbol{x}^*$ is based on a version of the projected gradient descent with the gradient estimated by a regularized local polynomial algorithm. Next, we propose a two-stage procedure for estimation of the minimum value $f^*$ of regression function $f$. At the first stage, we construct an accurate enough estimator of $\boldsymbol{x}^*$, which can be, for example, $\boldsymbol{z}_n$. At the second stage, we estimate the function value at the point obtained in the first stage using a rate optimal nonparametric procedure. We derive non-asymptotic upper bounds for the quadratic risk and optimization error of $\boldsymbol{z}_n$, and for the risk of estimating $f^*$. We establish minimax lower bounds showing that, under certain choice of parameters, the proposed algorithms achieve the minimax optimal rates of convergence on the class of smooth and strongly convex functions.
translated by 谷歌翻译
当回归函数属于标准的平滑类时,由衍生物的单变量函数组成,衍生物到达$(\ gamma + 1)$ th由Action Anclople或Ae界定的常见常数,众所周知,最小的收敛速率均值平均错误(MSE)是$ \左(\ FRAC {\ SIGMA ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} {2 \ gamma + 3}} $ \伽玛$是有限的,样本尺寸$ n \ lightarrow \ idty $。从一个不可思议的观点来看,考虑有限$ N $,本文显示:对于旧的H \“较旧的和SoboLev类,最低限度最佳速率是$ \ frac {\ sigma ^ {2} \ left(\ gamma \ vee1 \右)$ \ frac {n} {\ sigma ^ {2}} \ precsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $和$ \ left(\ frac {\ sigma ^ {2}} {n} \右)^ {\ frac {2 \ gamma + 2} $ \ r \ frac {n} {\ sigma ^ {2}}} \ succsim \ left(\ gamma \ vee1 \右)^ {2 \ gamma + 3} $。为了建立这些结果,我们在覆盖和覆盖号码上获得上下界限,以获得$ k的广义H \“较旧的班级$ th($ k = 0,...,\ gamma $)衍生物由上面的参数$ r_ {k} $和$ \ gamma $ th衍生物是$ r _ {\ gamma + 1} - $ lipschitz (以及广义椭圆形的平滑功能)。我们的界限锐化了标准类的古典度量熵结果,并赋予$ \ gamma $和$ r_ {k} $的一般依赖。通过在$ r_ {k} = 1 $以下派生MIMIMAX最佳MSE率,$ r_ {k} \ LEQ \ left(k-1 \右)!$和$ r_ {k} = k!$(与后两个在我们的介绍中有动机的情况)在我们的新熵界的帮助下,我们展示了一些有趣的结果,无法在文献中的现有熵界显示。对于H \“较旧的$ D-$变化函数,我们的结果表明,归一渐近率$ \左(\ frac {\ sigma ^ {2}} {n}右)^ {\ frac {2 \ Gamma + 2} {2 \ Gamma + 2 + D}} $可能是有限样本中的MSE低估。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
概率分布之间的差异措施,通常被称为统计距离,在概率理论,统计和机器学习中普遍存在。为了在估计这些距离的距离时,对维度的诅咒,最近的工作已经提出了通过带有高斯内核的卷积在测量的分布中平滑局部不规则性。通过该框架的可扩展性至高维度,我们研究了高斯平滑$ P $ -wassersein距离$ \ mathsf {w} _p ^ {(\ sigma)} $的结构和统计行为,用于任意$ p \ GEQ 1 $。在建立$ \ mathsf {w} _p ^ {(\ sigma)} $的基本度量和拓扑属性之后,我们探索$ \ mathsf {w} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,其中$ \ hat {\ mu} _n $是$ n $独立观察的实证分布$ \ mu $。我们证明$ \ mathsf {w} _p ^ {(\ sigma)} $享受$ n ^ { - 1/2} $的参数经验融合速率,这对比$ n ^ { - 1 / d} $率对于未平滑的$ \ mathsf {w} _p $ why $ d \ geq 3 $。我们的证明依赖于控制$ \ mathsf {w} _p ^ {(\ sigma)} $ by $ p $ th-sting spoollow sobolev restion $ \ mathsf {d} _p ^ {(\ sigma)} $并导出限制$ \ sqrt {n} \,\ mathsf {d} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,适用于所有尺寸$ d $。作为应用程序,我们提供了使用$ \ mathsf {w} _p ^ {(\ sigma)} $的两个样本测试和最小距离估计的渐近保证,使用$ p = 2 $的实验使用$ \ mathsf {d} _2 ^ {(\ sigma)} $。
translated by 谷歌翻译
Quantifying the deviation of a probability distribution is challenging when the target distribution is defined by a density with an intractable normalizing constant. The kernel Stein discrepancy (KSD) was proposed to address this problem and has been applied to various tasks including diagnosing approximate MCMC samplers and goodness-of-fit testing for unnormalized statistical models. This article investigates a convergence control property of the diffusion kernel Stein discrepancy (DKSD), an instance of the KSD proposed by Barp et al. (2019). We extend the result of Gorham and Mackey (2017), which showed that the KSD controls the bounded-Lipschitz metric, to functions of polynomial growth. Specifically, we prove that the DKSD controls the integral probability metric defined by a class of pseudo-Lipschitz functions, a polynomial generalization of Lipschitz functions. We also provide practical sufficient conditions on the reproducing kernel for the stated property to hold. In particular, we show that the DKSD detects non-convergence in moments with an appropriate kernel.
translated by 谷歌翻译
我们研究基于度量传输的非参数密度估计器的收敛性和相关距离。这些估计量代表了利息的度量,作为传输图下选择的参考分布的推动力,其中地图是通过最大似然目标选择(等效地,将经验性的kullback-leibler损失)或其受惩罚版本选择。我们通过将M估计的技术与基于运输的密度表示的分析性能相结合,为一般惩罚措施估计量的一般类别的措施运输估计器建立了浓度不平等。然后,我们证明了我们的理论对三角形knothe-rosenblatt(kr)在$ d $维单元方面的运输的含义,并表明该估计器的惩罚和未化的版本都达到了Minimax最佳收敛速率,超过了H \ \ \'“较旧的密度类别。具体来说,我们建立了在有限的h \“较旧型球上,未确定的非参数最大似然估计,然后在某些sobolev-penalate的估计器和筛分的小波估计器中建立了最佳速率。
translated by 谷歌翻译
我们提出了一种统一的技术,用于顺序估计分布之间的凸面分歧,包括内核最大差异等积分概率度量,$ \ varphi $ - 像Kullback-Leibler发散,以及最佳运输成本,例如Wassersein距离的权力。这是通过观察到经验凸起分歧(部分有序)反向半角分离的实现来实现的,而可交换过滤耦合,其具有这些方法的最大不等式。这些技术似乎是对置信度序列和凸分流的现有文献的互补和强大的补充。我们构建一个离线到顺序设备,将各种现有的离线浓度不等式转换为可以连续监测的时间均匀置信序列,在任意停止时间提供有效的测试或置信区间。得到的顺序边界仅在相应的固定时间范围内支付迭代对数价格,保留对问题参数的相同依赖性(如适用的尺寸或字母大小)。这些结果也适用于更一般的凸起功能,如负差分熵,实证过程的高度和V型统计。
translated by 谷歌翻译