进化机器人技术的领域使用自然进化原理来设计机器人。在本文中,我们研究了在现有的Robogen框架中添加受骨骼肌启发的新模块的效果:线性执行器。此外,我们研究机器人在普通环境中的发展与在粗糙环境中进化的机器人不同。我们考虑了定向运动的任务,以比较进化的机器人形态。结果表明,线性执行器的添加对机器人在普通环境中进化的机器人的性能和形态没有重大影响。但是,我们发现在普通环境中进化的机器人的形态存在显着差异,机器人在粗糙的环境中进化。我们发现,当我们改变环境的地形时,出现了更复杂的行为和形态。
translated by 谷歌翻译
同时发展机器人的形态(体)和控制器(大脑)可能导致后代遗传体和大脑之间的不匹配。为了缓解这个问题,相对较早地提出了通过所谓的生活框架的所谓的生命框架的学习期。但是,实证评估仍缺乏迄今为止。在本文中,我们研究了这种学习机制与不同视角的影响。使用广泛的模拟,我们认为,与纯粹的进化方法相比,学习可以大大提高任务性能并减少一定适合水平所需的几代人数。此外,虽然学习只直接影响控制器,但我们证明了进化的形态也将是不同的。这提供了定量演示,即大脑的变化可以诱导体内的变化。最后,我们研究了给定体学习的能力量化的形态智力的概念。我们观察到学习三角洲,继承与学习大脑之间的性能差异,在整个进化过程中都在增长。这表明演化正在生产具有越来越多的可塑性的机器人,即连续几代变得越来越好,更好的学习者,这反过来使它们更好,在给定的任务中更好地更好。总而言之,我们的结果表明,生活的三角形不仅是理论兴趣的概念,而且是一种具有实际好处的系统架构。
translated by 谷歌翻译
在进化机器人技术中,进化算法用于合作地形态和控制。但是,合作化会带来不同的挑战:您如何优化一个经常改变其输入和输出数量的身体控制器?然后,研究人员必须在集中式或分散的控制之间做出一些选择。在本文中,我们研究了集中式和分散控制器对模块化机器人性能和形态的影响。这是通过实施一个集中式和两个分散的连续时间复发性神经网络控制器以及基线的正弦波控制器来完成的。我们发现,与形态大小更独立的分散方法的表现明显优于其他方法。它在多种形态大小中也很好地工作。此外,我们强调了为不断变化的形态实施集中控制的困难,并认为我们的集中式控制器在早期融合中比其他方法更挣扎。我们的发现表明,重复的分散网络在发展模块化机器人的形态和控制时是有益的。总体而言,如果这些发现转化为其他机器人系统,那么我们所遇到的结果和问题可以帮助未来的研究人员在合作地形态和控制时选择控制方法。
translated by 谷歌翻译
When simulating soft robots, both their morphology and their controllers play important roles in task performance. This paper introduces a new method to co-evolve these two components in the same process. We do that by using the hyperNEAT algorithm to generate two separate neural networks in one pass, one responsible for the design of the robot body structure and the other for the control of the robot. The key difference between our method and most existing approaches is that it does not treat the development of the morphology and the controller as separate processes. Similar to nature, our method derives both the "brain" and the "body" of an agent from a single genome and develops them together. While our approach is more realistic and doesn't require an arbitrary separation of processes during evolution, it also makes the problem more complex because the search space for this single genome becomes larger and any mutation to the genome affects "brain" and the "body" at the same time. Additionally, we present a new speciation function that takes into consideration both the genotypic distance, as is the standard for NEAT, and the similarity between robot bodies. By using this function, agents with very different bodies are more likely to be in different species, this allows robots with different morphologies to have more specialized controllers since they won't crossover with other robots that are too different from them. We evaluate the presented methods on four tasks and observe that even if the search space was larger, having a single genome makes the evolution process converge faster when compared to having separated genomes for body and control. The agents in our population also show morphologies with a high degree of regularity and controllers capable of coordinating the voxels to produce the necessary movements.
translated by 谷歌翻译
许多生物,包括各种种类的蜘蛛和毛毛虫,都会改变其形状以切换步态并适应不同的环境。从可拉伸电路到高度变形的软机器人,最近的技术进步已经开始使变化的机器人成为可能。但是,目前尚不清楚应如何以及何时发生变化以及可以获得哪些功能,从而导致各种未解决的设计和控制问题。为了开始解决这些问题,我们在这里模拟,设计和构建一个软机器人,该机器人利用形状变化来在平坦和倾斜的表面上实现运动。在模拟中对该机器人进行建模,我们在两个环境中探索了它的功能,并证明了特定于环境特定形状和步态的存在,这些形状和步态成功地转移到了物理硬件中。我们发现,改变形状的机器人在模拟和现实中比等效但不正确的机器人更好地遍历这些环境。
translated by 谷歌翻译
生物系统对形态损害非常强大,但人工系统(机器人)目前却不是。在本文中,我们介绍了一个基于神经细胞自动机的系统,其中运动机器人的进化,然后赋予能够通过基于梯度的训练从损害中再生其形态。因此,我们的方法结合了进化的好处,可以发现各种不同的机器人形态,以及通过可区别的更新规则对鲁棒性的监督培训的效率。所得的神经细胞自动机能够生长能够恢复超过80 \%功能的虚拟机器人,即使经过严重的形态损害。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
混合微生物群落通常由各种细菌和真菌物种组成,在从土壤到人类肠道和皮肤的众多环境中都是基础。它们的演变是相互交织的动态的一个范式例子,不仅物种之间的关系起作用,而且每个物种都向其他物种展示的机会(可能是可能的伤害)。这些机会实际上是\ textit {provryances},可以通过可遗传的变化和选择来抓住。在本文中,从混合微生物群落的系统性角度开始,我们着重于提供在进化中的关键作用,并将其与程序和机器人的人工演变进行对比。我们坚持认为,这两个领域是整齐的分离,因为自然演变以完全开放的方式扩展了其可能性的空间,而后者本质上受到定义的算法框架的固有限制。这种差异也表征了一个设想的设置,在物理世界中,机器人在其中发展。我们提出了支持我们主张的论点,并提出了一个用于评估陈述的实验环境。这项贡献的目的不仅仅是讨论机器人工演变的局限性,而是强调生物圈进化的巨大潜力,以微生物社区的发展为精美。
translated by 谷歌翻译
本文探讨了培训来生成代码的大型语言模型(LLMS)可以极大地提高对基因编程(GP)应用程序的突变操作员的有效性。由于此类LLM受益于包括顺序更改和修改的训练数据,因此它们可以近似人类会做出的可能变化。为了强调通过大型模型(ELM)的这种进化的含义的广度,在主要实验ELM与MAP-ELITE结合产生了数十万个Python程序的功能示例,这些示例在Sodarace域中输出了在Sodarace域中运行AMBULE的机器人,原始LLM从未在预训练中见过。然后,这些示例有助于引导培训一种新的条件语言模型,该模型可以为特定地形输出合适的步行者。引导新模型可以在以前可用的零培训数据中为给定上下文中输出适当的工件的新模型具有对开放性,深度学习和增强学习的影响。在这里深入探讨了这些含义,以期激发榆树现在打开的新研究方向。
translated by 谷歌翻译
本文采取了一步,为人形机器人提供自适应形态能力。我们提出了一种系统的方法,可以使机器人盖变形其形状,其整体尺寸适合人体机器人的人体测量值。更确切地说,我们提出了一个封面概念,该概念由两个主要组成部分组成:骨骼,这是一个称为Node的基本元素和一个软膜的重复,该元素将盖子包裹起来并用其运动构成变形。本文重点关注盖子骨骼,并解决了节点设计,系统建模,电动机定位以及变形系统的控制设计的挑战性问题。封面建模侧重于运动学,并提出了定义系统运动限制的系统方法。然后,我们应用遗传算法来找到运动位置,以使变形盖完全致动。最后,我们提出了控制算法,使覆盖物变为随时间变化的形状。通过进行四个不同的方尺寸盖,分别具有3x3、4x8、8x8和20x20节点的运动学模拟来验证整个方法。对于每个封面,我们应用遗传算法来选择运动位置并执行模拟以跟踪所需形状。仿真结果表明,提出的方法可确保封面跟踪具有良好跟踪性能的所需形状。
translated by 谷歌翻译
群的行为来自代理的局部互动及其环境通常被编码为简单规则。通过观看整体群体行为的视频来提取规则可以帮助我们研究和控制自然界的群体行为,或者是由外部演员设计的人造群体。它还可以作为群体机器人技术灵感的新来源。然而,提取此类规则是具有挑战性的,因为群体的新兴特性与其当地互动之间通常没有明显的联系。为此,我们开发了一种方法,可以自动从视频演示中提取可理解的群体控制器。该方法使用由比较八个高级群指标的健身函数驱动的进化算法。该方法能够在简单的集体运动任务中提取许多控制器(行为树)。然后,我们对导致不同树木但类似行为的行为进行定性分析。这提供了基于观察值自动提取群体控制器的第一步。
translated by 谷歌翻译
最近,我们强调了一个基本问题,该问题被认为是混淆算法优化的,即\ textit {Confing}与目标函数的目标。即使前者的定义很好,后者也可能并不明显,例如,在学习一种策略来导航迷宫以找到目标(客观)时,有效的目标函数\ textit {评估}策略可能不是一个简单的功能到目标的距离。我们建议自动化可能发现良好的目标功能的手段 - 此处得到的建议。我们提出\ textbf {s} iolution \ textbf {a} nd \ textbf {f} itness \ textbf {e} volution(\ textbf {safe}),a \ textit {comensalistic} coovolutionary algorithm候选解决方案和一系列候选目标功能。作为此概念原理的证明,我们表明安全不仅成功地发展了机器人迷宫领域内的解决方案,而且还可以在进化过程中衡量解决方案质量所需的目标函数。
translated by 谷歌翻译
教机器人通过加强学习(RL)在复杂的三维环境环境下学习多样化的运动技能仍然具有挑战性。已经表明,在将其转移到复杂设置之前,在简单设置中的培训代理可以改善培训过程,但到目前为止,仅在相对简单的运动技能的背景下。在这项工作中,我们适应了增强的配对开放式开拓者(EPOET)方法,以训练更复杂的代理,以在复杂的三维地形上有效行走。首先,为了产生更加坚固且多样化的三维训练地形,并增加了复杂性,我们扩展了组成模式产生的网络 - 增强拓扑的神经进化(CPPN-NEAT)方法,并包括随机形状。其次,我们将Epoet与软性演员 - 批评外的优化相结合,产生Epoet-SAC,以确保代理商可以学习更多多样化的技能,以解决更具挑战性的任务。我们的实验结果表明,新生成的三维地形具有足够的多样性和复杂性来指导学习,Epoet成功地学习了这些地形上的复杂运动技能,并且我们提出的EPOET-SAC方法在Epoet上略有改进。
translated by 谷歌翻译
在人类居住的环境中使用机器人的挑战是设计对人类互动引起的扰动且鲁棒的设计行为。我们的想法是用内在动机(IM)拟订机器人,以便它可以处理新的情况,并作为人类的真正社交,因此对人类互动伙伴感兴趣。人机互动(HRI)实验主要关注脚本或远程机器人,这是模拟特性,如IM来控制孤立的行为因素。本文介绍了一个“机器人学家”的研究设计,允许比较自主生成的行为彼此,而且首次评估机器人中基于IM的生成行为的人类感知。我们在受试者内部用户学习(n = 24),参与者与具有不同行为制度的完全自主的Sphero BB8机器人互动:一个实现自适应,本质上动机的行为,另一个是反应性的,但不是自适应。机器人及其行为是故意最小的,以专注于IM诱导的效果。与反应基线行为相比,相互作用后问卷的定量分析表明对尺寸“温暖”的显着提高。温暖被认为是人类社会认知中社会态度形成的主要维度。一种被认为是温暖(友好,值得信赖的)的人体验更积极的社交互动。
translated by 谷歌翻译
将不断发展的机器人暴露在可变条件下是必要的,以获取对环境变化且可以越过现实差距的解决方案。但是,我们尚无分析和理解环境变化对进化过程的影响的方法,因此可以选择合适的变化范围。在本文中,我们介绍了一种允许我们衡量环境变化的影响的方法,并分析了变化幅度,引入它们的方式以及不断发展的剂的性能和鲁棒性之间的关系。我们的结果表明,(i)进化算法可以忍受具有很大影响的环境变化,(ii)影响代理行为的变化要比影响代理商或环境和环境的初始状态,以及环境和环境的初始状态的变化要好得多。 (iii)通过多次评估提高健身措施的准确性并不总是有用的。此外,我们的结果表明,环境变化允许生成解决方案,这些解决方案在不同的环境和不变环境中都能更好地发挥作用。
translated by 谷歌翻译
为了协助游戏开发人员制作游戏NPC,我们展示了EvolvingBehavior,这是一种新颖的工具,用于基因编程,以在不真实的引擎4中发展行为树4.在初步评估中,我们将演变的行为与我们的研究人员设计的手工制作的树木和随机的树木进行了比较 - 在3D生存游戏中种植的树木。我们发现,在这种情况下,EvolvingBehavior能够产生行为,以实现设计师的目标。最后,我们讨论了共同创造游戏AI设计工具的探索的含义和未来途径,以及行为树进化的挑战和困难。
translated by 谷歌翻译
在过去的几十年中,对生物启发的智能及其对机器人技术的应用非常关注。本文对生物启发的智能进行了全面的调查,重点是神经动力学方法,尤其是对自主机器人系统的路径计划和控制。首先,引入了以生物启发的分流模型及其变体(添加剂模型和门控偶极模型),并详细介绍其主要特征。然后,回顾了实时路径计划和各种机器人系统控制的两个主要神经动力学应用。一个以神经动力学模型为特征的生物启发的神经网络框架,用于移动机器人,清洁机器人和水下机器人。生物启发的神经网络已在无碰撞导航和合作中广泛使用,没有任何学习程序,全球成本功能以及动态环境的先验知识。此外,还进一步讨论了针对各种机器人系统的生物启发的后台控制器,这些控制器能够在发生较大的初始跟踪误差时消除速度跳跃。最后,本文讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
离散基因监管网络(GRNS)在鲁棒性和模块化的研究中起着至关重要的作用。评估GRNS稳健性的常见方法是测量它们调节一组扰动基因激活图案回到其未受干扰的形式的能力。通常,通过收集通过基因激活模式的预定分布产生的随机样品来获得扰动。这种采样方法引入了随机性,否定动态。这种动态施加在已经复杂的健身景观之上。因此,在使用采样的情况下,重要的是要理解哪种效果来自健身景观的结构,并且从施加的动力学产生。健身功能的随机性也会导致重现性和实验后分析中的困难。通过考虑基因活性模式的完全分布,我们制定确定性分布适应性评估,以避免适应性评估中的随机性。这种健身评估有助于重复性。其确定性允许我们在健身上确定理论界,从而确定算法是否达到了全局最优。它使我们能够将问题域与嘈杂的健身评估的影响区分开来,从而解决〜\ CiteT {espinosa2010Specialization}问题领域的行为中的两个剩余异常。我们还揭示了解决方案GRNS的一些属性,使它们具有稳健和模块化,导致对问题域的性质更深入了解。我们通过讨论潜在的方向来模拟和理解较大,更复杂的域中的模块化的出现,这是产生更有用的模块化解决方案的关键,并理解生物系统中的模块化的难以。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译