Most camera lens systems are designed in isolation, separately from downstream computer vision methods. Recently, joint optimization approaches that design lenses alongside other components of the image acquisition and processing pipeline -- notably, downstream neural networks -- have achieved improved imaging quality or better performance on vision tasks. However, these existing methods optimize only a subset of lens parameters and cannot optimize glass materials given their categorical nature. In this work, we develop a differentiable spherical lens simulation model that accurately captures geometrical aberrations. We propose an optimization strategy to address the challenges of lens design -- notorious for non-convex loss function landscapes and many manufacturing constraints -- that are exacerbated in joint optimization tasks. Specifically, we introduce quantized continuous glass variables to facilitate the optimization and selection of glass materials in an end-to-end design context, and couple this with carefully designed constraints to support manufacturability. In automotive object detection, we show improved detection performance over existing designs even when simplifying designs to two- or three-element lenses, despite significantly degrading the image quality. Code and optical designs will be made publicly available.
translated by 谷歌翻译
Lensless cameras are a class of imaging devices that shrink the physical dimensions to the very close vicinity of the image sensor by replacing conventional compound lenses with integrated flat optics and computational algorithms. Here we report a diffractive lensless camera with spatially-coded Voronoi-Fresnel phase to achieve superior image quality. We propose a design principle of maximizing the acquired information in optics to facilitate the computational reconstruction. By introducing an easy-to-optimize Fourier domain metric, Modulation Transfer Function volume (MTFv), which is related to the Strehl ratio, we devise an optimization framework to guide the optimization of the diffractive optical element. The resulting Voronoi-Fresnel phase features an irregular array of quasi-Centroidal Voronoi cells containing a base first-order Fresnel phase function. We demonstrate and verify the imaging performance for photography applications with a prototype Voronoi-Fresnel lensless camera on a 1.6-megapixel image sensor in various illumination conditions. Results show that the proposed design outperforms existing lensless cameras, and could benefit the development of compact imaging systems that work in extreme physical conditions.
translated by 谷歌翻译
本文提出了一种新型电镀摄像机的校准算法,尤其是多焦距配置,其中使用了几种类型的微透镜,仅使用原始图像。电流校准方法依赖于简化投影模型,使用重建图像的功能,或者需要每种类型的微透镜进行分离的校准。在多聚焦配置中,根据微透镜焦距,场景的相同部分将展示不同量的模糊。通常,使用具有最小模糊量的微图像。为了利用所有可用的数据,我们建议在新推出的模糊的模糊(BAP)功能的帮助下,在新的相机模型中明确地模拟Defocus模糊。首先,它用于检索初始相机参数的预校准步骤,而第二步骤,以表达在我们的单个优化过程中最小化的新成本函数。第三,利用它来校准微图像之间的相对模糊。它将几何模糊,即模糊圈链接到物理模糊,即点传播函数。最后,我们使用产生的模糊概况来表征相机的景深。实际数据对受控环境的定量评估展示了我们校准的有效性。
translated by 谷歌翻译
由少量镜头组成的全景环形镜头(PAL)在全景周围具有巨大潜力,该镜头围绕着移动和可穿戴设备的传感任务,因为其尺寸很小,并且视野很大(FOV)。然而,由于缺乏畸变校正的镜头,小体积PAL的图像质量仅限于光学极限。在本文中,我们提出了一个环形计算成像(ACI)框架,以打破轻质PAL设计的光学限制。为了促进基于学习的图像恢复,我们引入了基于波浪的模拟管道,用于全景成像,并通过多个数据分布来应对合成间隙。提出的管道可以轻松地适应具有设计参数的任何PAL,并且适用于宽松的设计。此外,我们考虑了全景成像和物理知识学习的物理先验,我们设计了物理知情的图像恢复网络(PI2RNET)。在数据集级别,我们创建了Divpano数据集,其广泛的实验表明,我们提出的网络在空间变化的降级下在全景图像恢复中设置了新的最新技术。此外,对只有3个球形镜头的简单PAL上提议的ACI的评估揭示了高质量全景成像与紧凑设计之间的微妙平衡。据我们所知,我们是第一个探索PAL中计算成像(CI)的人。代码和数据集将在https://github.com/zju-jiangqi/aci-pi2rnet上公开提供。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
Multispectral imaging has been used for numerous applications in e.g., environmental monitoring, aerospace, defense, and biomedicine. Here, we present a diffractive optical network-based multispectral imaging system trained using deep learning to create a virtual spectral filter array at the output image field-of-view. This diffractive multispectral imager performs spatially-coherent imaging over a large spectrum, and at the same time, routes a pre-determined set of spectral channels onto an array of pixels at the output plane, converting a monochrome focal plane array or image sensor into a multispectral imaging device without any spectral filters or image recovery algorithms. Furthermore, the spectral responsivity of this diffractive multispectral imager is not sensitive to input polarization states. Through numerical simulations, we present different diffractive network designs that achieve snapshot multispectral imaging with 4, 9 and 16 unique spectral bands within the visible spectrum, based on passive spatially-structured diffractive surfaces, with a compact design that axially spans ~72 times the mean wavelength of the spectral band of interest. Moreover, we experimentally demonstrate a diffractive multispectral imager based on a 3D-printed diffractive network that creates at its output image plane a spatially-repeating virtual spectral filter array with 2x2=4 unique bands at terahertz spectrum. Due to their compact form factor and computation-free, power-efficient and polarization-insensitive forward operation, diffractive multispectral imagers can be transformative for various imaging and sensing applications and be used at different parts of the electromagnetic spectrum where high-density and wide-area multispectral pixel arrays are not widely available.
translated by 谷歌翻译
我们介绍了一种新的图像取证方法:将物理折射物(我们称为图腾)放入场景中,以保护该场景拍摄的任何照片。图腾弯曲并重定向光线,因此在单个图像中提供了多个(尽管扭曲)的多个(尽管扭曲)。防守者可以使用这些扭曲的图腾像素来检测是否已操纵图像。我们的方法通过估计场景中的位置并使用其已知的几何和材料特性来估算其位置,从而使光线通过图腾的光线不十障。为了验证图腾保护的图像,我们从图腾视点重建的场景与场景的外观从相机的角度来检测到不一致之处。这样的方法使对抗性操纵任务更加困难,因为对手必须以几何一致的方式对图腾和图像像素进行修改,而又不知道图腾的物理特性。与先前的基于学习的方法不同,我们的方法不需要在特定操作的数据集上进行培训,而是使用场景和相机的物理属性来解决取证问题。
translated by 谷歌翻译
神经辐射场(NERF)及其变体在代表3D场景和合成照片现实的小说视角方面取得了巨大成功。但是,它们通常基于针孔摄像头模型,并假设全焦点输入。这限制了它们的适用性,因为从现实世界中捕获的图像通常具有有限的场地(DOF)。为了减轻此问题,我们介绍了DOF-NERF,这是一种新型的神经渲染方法,可以处理浅的DOF输入并可以模拟DOF效应。特别是,它扩展了NERF,以模拟按照几何光学的原理模拟镜头的光圈。这样的物理保证允许DOF-NERF使用不同的焦点配置操作视图。 DOF-NERF受益于显式光圈建模,还可以通过调整虚拟光圈和焦点参数来直接操纵DOF效果。它是插件,可以插入基于NERF的框架中。关于合成和现实世界数据集的实验表明,DOF-NERF不仅在全焦点设置中与NERF相当,而且可以合成以浅DOF输入为条件的全焦点新型视图。还展示了DOF-nerf在DOF渲染上的有趣应用。源代码将在https://github.com/zijinwuzijin/dof-nerf上提供。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
来自单个运动模糊图像的视频重建是一个具有挑战性的问题,可以增强现有的相机的能力。最近,几种作品使用传统的成像和深度学习解决了这项任务。然而,由于方向模糊和噪声灵敏度,这种纯粹 - 数字方法本质上是有限的。一些作品提出使用非传统图像传感器解决这些限制,然而,这种传感器非常罕见和昂贵。为了使这些限制具有更简单的方法,我们提出了一种用于视频重建的混合光学 - 数字方法,其仅需要对现有光学系统的简单修改。在图像采集期间,在镜头孔径中使用学习的动态相位编码以对运动轨迹进行编码,该运动轨迹用作视频重建过程的先前信息。使用图像到视频卷积神经网络,所提出的计算相机以各种编码运动模糊图像的各种帧速率产生锐帧帧突发。与现有方法相比,我们使用模拟和现实世界的相机原型表现了优势和改进的性能。
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
我们考虑了户外照明估算的挑战性问题,即影像逼真的虚拟对象将其插入照片中的目标。现有在室外照明估计的作品通常将场景照明简化为环境图,该图无法捕获室外场景中的空间变化的照明效果。在这项工作中,我们提出了一种神经方法,该方法可以从单个图像中估算5D HDR光场,以及一个可区分的对象插入公式,该公式可以通过基于图像的损失来端对端训练,从而鼓励现实主义。具体而言,我们设计了针对室外场景量身定制的混合照明表示,其中包含一个HDR Sky Dome,可处理太阳的极端强度,并具有体积的照明表示,该代表模拟了周围场景的空间变化外观。通过估计的照明,我们的阴影感知对象插入是完全可区分的,这使得对复合图像的对抗训练可以为照明预测提供其他监督信号。我们在实验上证明,混合照明表示比现有的室外照明估计方法更具性能。我们进一步显示了AR对象插入在自主驾驶应用程序中的好处,在对我们的增强数据进行培训时,我们可以在其中获得3D对象检测器的性能提高。
translated by 谷歌翻译
Google Research Basecolor Metallic Roughness Normal Multi-View Images NeRD Volume Decomposed BRDF Relighting & View synthesis Textured MeshFigure 1: Neural Reflectance Decomposition for Relighting. We encode multiple views of an object under varying or fixed illumination into the NeRD volume.We decompose each given image into geometry, spatially-varying BRDF parameters and a rough approximation of the incident illumination in a globally consistent manner. We then extract a relightable textured mesh that can be re-rendered under novel illumination conditions in real-time.
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
捕获比窄FOV相机的宽视野(FOV)相机,其捕获更大的场景区域,用于许多应用,包括3D重建,自动驾驶和视频监控。然而,广角图像包含违反针孔摄像机模型底层的假设的扭曲,导致对象失真,估计场景距离,面积和方向困难,以及防止在未造成的图像上使用现成的深层模型。下游计算机视觉任务。图像整流,旨在纠正这些扭曲,可以解决这些问题。本文从转换模型到整流方法的广角图像整流的全面调查进展。具体地,我们首先介绍了不同方法中使用的相机模型的详细描述和讨论。然后,我们总结了几种失真模型,包括径向失真和投影失真。接下来,我们审查了传统的基于几何图像整流方法和基于深度学习的方法,其中前者将失真参数估计作为优化问题,并且后者通过利用深神经网络的力量来将其作为回归问题。我们评估在公共数据集上最先进的方法的性能,并显示虽然两种方法都可以实现良好的结果,但这些方法仅适用于特定的相机型号和失真类型。我们还提供了强大的基线模型,并对合成数据集和真实世界广角图像进行了对不同失真模型的实证研究。最后,我们讨论了几个潜在的研究方向,预计将来进一步推进这一领域。
translated by 谷歌翻译
基金标记已广泛用于识别可以通过相机检测到的对象或嵌入式消息。主要是,现有的检测方法假设标记印刷在理想的平面表面上。由于光学/透视失真和运动模糊的各种成像伪像,标记通常无法识别。为了克服这些局限性,我们提出了一个新型的可变形基准标记系统,该系统由三个主要部分组成:首先,基准标记生成器会创建一组自由形式的颜色模式,以在唯一的视觉代码中编码大量的大规模信息。其次,一个可区分的图像模拟器创建了具有变形标记的影像现实主义场景图像的训练数据集,并在优化期间以可区分的方式渲染。渲染的图像包括带有镜面反射,光学失真,散焦和运动模糊,颜色改变,成像噪声以及标记的形状变形的逼真的阴影。最后,训练有素的标记探测器寻求感兴趣的区域,并通过反变形转换同时识别多个标记模式。可变形的标记创建者和探测器网络以端到端的方式通过可区分的光真逼真的渲染器共同优化,使我们能够以高精度来稳健地识别广泛的可变形标记。我们的可变形标记系统能够在〜29 fps中成功解码36位消息,并具有严重的形状变形。结果验证了我们的系统明显优于传统和数据驱动的标记方法。我们基于学习的标记系统打开了基准标记的新有趣应用,包括对人体的成本效益运动捕获,使用我们的基金标记阵列作为结构化的光模式进行主动3D扫描,以及强大的增强现实对象的虚拟物体在动态上进行虚拟对象渲染表面。
translated by 谷歌翻译
我们解决了从2D图像的集合中生成新颖图像的问题,显示了折射率和反射性物体。当前溶液在排放模型之后采用不透明或透明的光传输。取而代之的是,我们优化了折射率(IOR)的3D变量指数的领域,并通过它痕迹光线根据eikonal Light Transfers的定律弯曲朝向上述IOR的空间梯度弯曲。
translated by 谷歌翻译
我们提出了一种新的方法来获取来自在线图像集合的对象表示,从具有不同摄像机,照明和背景的照片捕获任意物体的高质量几何形状和材料属性。这使得各种以各种对象渲染应用诸如新颖的综合,致密和协调的背景组合物,从疯狂的内部输入。使用多级方法延伸神经辐射场,首先推断表面几何形状并优化粗估计的初始相机参数,同时利用粗糙的前景对象掩模来提高训练效率和几何质量。我们还介绍了一种强大的正常估计技术,其消除了几何噪声的效果,同时保持了重要细节。最后,我们提取表面材料特性和环境照明,以球形谐波表示,具有处理瞬态元素的延伸部,例如,锋利的阴影。这些组件的结合导致高度模块化和有效的对象采集框架。广泛的评估和比较证明了我们在捕获高质量的几何形状和外观特性方面的方法,可用于渲染应用。
translated by 谷歌翻译
相互预测是实现现代视频编码标准高压效率的关键技术之一。在编码之前,需要将360度视频映射到2D图像平面,以便使用现有的视频编码标准进行压缩。但是,当将球形数据映射到2D图像平面上时不可避免地发生扭曲,但是,损害了经典的中间预测技术的性能。在本文中,我们为360度视频提出了一种运动平面自适应相互预测技术(MPA),该视频考虑了360度视频的球形特征。基于视频的已知投影格式,MPA允许对3D空间中的不同运动平面执行相互预测,而不必在理论上任意映射 - 2D图像表示。我们进一步推导了运动平面自适应运动矢量预测技术(MPA-MVP),该技术允许在不同的运动平面和运动模型之间转换运动信息。我们建议将MPA与MPA-MVP一起集成到最新的H.266/VVC视频编码标准中,根据PSNR,Bjontegaard Delta速率节省了1.72%,峰值为3.97%,为1.56%,峰值为3.97%。基于WS-PSNR的峰值为3.40%,而VTM-14.2平均水平为基础。
translated by 谷歌翻译
从数字艺术到AR和VR体验,图像编辑和合成已经变得无处不在。为了生产精美的复合材料,需要对相机进行几何校准,这可能很乏味,需要进行物理校准目标。代替传统的多图像校准过程,我们建议使用深层卷积神经网络直接从单个图像中直接从单个图像中推断摄像机校准参数,例如音高,滚动,视场和镜头失真。我们使用大规模全景数据集中自动生成样品训练该网络,从而在标准L2误差方面产生了竞争精度。但是,我们认为将这种标准误差指标最小化可能不是许多应用程序的最佳选择。在这项工作中,我们研究了人类对几何相机校准中不准确性的敏感性。为此,我们进行了一项大规模的人类感知研究,我们要求参与者以正确和有偏见的摄像机校准参数判断3D对象的现实主义。基于这项研究,我们为摄像机校准开发了一种新的感知度量,并证明我们的深校准网络在标准指标以及这一新型感知度量方面都优于先前基于单像的校准方法。最后,我们演示了将校准网络用于多种应用程序,包括虚拟对象插入,图像检索和合成。可以在https://lvsn.github.io/deepcalib上获得我们方法的演示。
translated by 谷歌翻译