相互预测是实现现代视频编码标准高压效率的关键技术之一。在编码之前,需要将360度视频映射到2D图像平面,以便使用现有的视频编码标准进行压缩。但是,当将球形数据映射到2D图像平面上时不可避免地发生扭曲,但是,损害了经典的中间预测技术的性能。在本文中,我们为360度视频提出了一种运动平面自适应相互预测技术(MPA),该视频考虑了360度视频的球形特征。基于视频的已知投影格式,MPA允许对3D空间中的不同运动平面执行相互预测,而不必在理论上任意映射 - 2D图像表示。我们进一步推导了运动平面自适应运动矢量预测技术(MPA-MVP),该技术允许在不同的运动平面和运动模型之间转换运动信息。我们建议将MPA与MPA-MVP一起集成到最新的H.266/VVC视频编码标准中,根据PSNR,Bjontegaard Delta速率节省了1.72%,峰值为3.97%,为1.56%,峰值为3.97%。基于WS-PSNR的峰值为3.40%,而VTM-14.2平均水平为基础。
translated by 谷歌翻译
包含丰富信息的元素图像和视频需要大量的数据存储和高传输成本。虽然对元素图像编码进行了很多研究,但对元素视频编码的研究非常有限。我们通过查看射线空间域中的问题而不是在常规像素域中的问题来研究元素视频编码的运动补偿。在这里,我们在射线空间运动的两个子轴上,即整数射线空间运动和分数射线空间运动,为Lenslet视频开发了一种新颖的运动补偿方案。拟议的新方案设计了光场运动补偿预测,使其可以轻松地集成到众所周知的视频编码技术中,例如HEVC。与现有方法相比,实验结果显示出显着的压缩效率,平均增益为19.63%,峰值增长率为29.1%。
translated by 谷歌翻译
Capturing large fields of view with only one camera is an important aspect in surveillance and automotive applications, but the wide-angle fisheye imagery thus obtained exhibits very special characteristics that may not be very well suited for typical image and video processing methods such as motion estimation. This paper introduces a motion estimation method that adapts to the typical radial characteristics of fisheye video sequences by making use of an equisolid re-projection after moving part of the motion vector search into the perspective domain via a corresponding back-projection. By combining this approach with conventional translational motion estimation and compensation, average gains in luminance PSNR of up to 1.14 dB are achieved for synthetic fish-eye sequences and up to 0.96 dB for real-world data. Maximum gains for selected frame pairs amount to 2.40 dB and 1.39 dB for synthetic and real-world data, respectively.
translated by 谷歌翻译
最新的2D图像压缩方案依赖于卷积神经网络(CNN)的力量。尽管CNN为2D图像压缩提供了有希望的观点,但将此类模型扩展到全向图像并不简单。首先,全向图像具有特定的空间和统计特性,这些特性无法通过当前CNN模型完全捕获。其次,在球体上,基本的数学操作组成了CNN体系结构,例如翻译和采样。在本文中,我们研究了全向图像的表示模型的学习,并建议使用球体的HealPix均匀采样的属性来重新定义用于全向图像的深度学习模型中使用的数学工具。特别是,我们:i)提出了在球体上进行新的卷积操作的定义,以保持经典2D卷积的高表现力和低复杂性; ii)适应标准的CNN技术,例如步幅,迭代聚集和像素改组到球形结构域;然后iii)将我们的新框架应用于全向图像压缩的任务。我们的实验表明,与应用于等应角图像的类似学习模型相比,我们提出的球形溶液可带来更好的压缩增益,可以节省比特率的13.7%。同样,与基于图形卷积网络的学习模型相比,我们的解决方案支持更具表现力的过滤器,这些过滤器可以保留高频并提供压缩图像的更好的感知质量。这样的结果证明了拟议框架的效率,该框架为其他全向视觉任务任务打开了新的研究场所,以在球体歧管上有效实施。
translated by 谷歌翻译
传统的视频压缩(VC)方法基于运动补偿变换编码,并且由于端到端优化问题的组合性质,运动估计,模式和量化参数选择的步骤和熵编码是单独优化的。学习VC允许同时对端到端速率失真(R-D)优化非线性变换,运动和熵模型的优化训练。大多数工作都在学习VC基于R-D损耗对连续帧的对考虑连续视频编解码器的端到端优化。它在传统的VC中众所周知的是,双向编码优于顺序压缩,因为它能够使用过去和未来的参考帧。本文提出了一种学习的分层双向视频编解码器(LHBDC),其结合了分层运动补偿预测和端到端优化的益处。实验结果表明,我们达到了迄今为​​止在PSNR和MS-SSIM中的学习VC方案报告的最佳R-D结果。与传统的视频编解码器相比,我们的端到端优化编解码器的RD性能优于PSNR和MS-SSIM中的X265和SVT-HEVC编码器(“非常流”预设)以及MS-中的HM 16.23参考软件。 SSIM。我们提出了由于所提出的新颖工具,例如学习屏蔽,流场附带和时间流量矢量预测等新颖工具,展示了表现出性能提升。重现我们结果的模型和说明可以在https://github.com/makinyilmaz/lhbdc/中找到
translated by 谷歌翻译
Block based motion estimation is integral to inter prediction processes performed in hybrid video codecs. Prevalent block matching based methods that are used to compute block motion vectors (MVs) rely on computationally intensive search procedures. They also suffer from the aperture problem, which can worsen as the block size is reduced. Moreover, the block matching criteria used in typical codecs do not account for the resulting levels of perceptual quality of the motion compensated pictures that are created upon decoding. Towards achieving the elusive goal of perceptually optimized motion estimation, we propose a search-free block motion estimation framework using a multi-stage convolutional neural network, which is able to conduct motion estimation on multiple block sizes simultaneously, using a triplet of frames as input. This composite block translation network (CBT-Net) is trained in a self-supervised manner on a large database that we created from publicly available uncompressed video content. We deploy the multi-scale structural similarity (MS-SSIM) loss function to optimize the perceptual quality of the motion compensated predicted frames. Our experimental results highlight the computational efficiency of our proposed model relative to conventional block matching based motion estimation algorithms, for comparable prediction errors. Further, when used to perform inter prediction in AV1, the MV predictions of the perceptually optimized model result in average Bjontegaard-delta rate (BD-rate) improvements of -1.70% and -1.52% with respect to the MS-SSIM and Video Multi-Method Assessment Fusion (VMAF) quality metrics, respectively as compared to the block matching based motion estimation system employed in the SVT-AV1 encoder.
translated by 谷歌翻译
在光场压缩中,基于图的编码功能强大,可以利用沿着不规则形状的信号冗余并获得良好的能量压实。然而,除了高度复杂性到处理高维图外,它们的图形构造方法对观点之间的差异信息的准确性非常敏感。在计算机软件生成的现实世界光场或合成光场中,由于渐晕效果和两种类型的光场视图之间的视图之间的巨大差异,将视差信息用于超射线投影可能会遭受不准确性。本文介绍了两种新型投影方案,导致差异信息的错误较小,其中一个投影方案还可以显着降低编码器和解码器的时间计算。实验结果表明,与原始投影方案和基于HEVC或基于JPEG PLENO的编码方法相比,使用这些建议可以大大增强超级像素的投影质量,以及率延伸性能。
translated by 谷歌翻译
虽然昼夜投影(ERP)是存储全向图像(也称为360度图像)的方便形式,但它既不是等区别也不是共形的,因此与随后的视觉通信不友好。在图像压缩的背景下,ERP将过度采样和变形和靠近杆子的东西,使得感知上最佳的比特分配难以实现。在传统的360度图像压缩中,引入了诸如区域明智的包装和平铺表示的技术以减轻过采样问题,实现有限的成功。在本文中,我们首次尝试学习用于全向图像压缩的深度神经网络之一。我们首先描述参数伪压花表示作为常见的伪变性地图突起的概括。提出了一种计算上易贪婪的方法,以确定关于速率失真性能的新型代理目标的假阴压表示的(子) - 优化配置。然后,我们提出了假阴压卷曲的360度图像压缩。在参数表示的合理约束下,可以通过标准卷积与所谓的假阴压填充有效地实现假阴压卷积。为了展示我们想法的可行性,我们实现了一个端到端的360度图像压缩系统,由学习的假阴短表示,分析变换,非均匀量化器,合成变换和熵模型组成。实验结果为19,790美元$ 9,790 $全向图像表明,我们的方法始终如一的比竞争方法达到更好的速率失真性能。此外,对于所有比特率的所有图像,我们的方法的视觉质量显着提高。
translated by 谷歌翻译
使用FASS-MVS,我们提出了一种具有表面感知半全局匹配的快速多视图立体声的方法,其允许从UAV捕获的单眼航空视频数据中快速深度和正常地图估计。反过来,由FASS-MVS估计的数据促进在线3D映射,这意味着在获取或接收到图像数据时立即和递增地生成场景的3D地图。 FASS-MVS由分层处理方案组成,其中深度和正常数据以及相应的置信度分数以粗略的方式估计,允许有效地处理由倾斜图像所固有的大型场景深度低无人机。实际深度估计采用用于致密多图像匹配的平面扫描算法,以产生深度假设,通过表面感知半全局优化来提取实际深度图,从而减少了SGM的正平行偏压。给定估计的深度图,然后通过将深度图映射到点云中并计算狭窄的本地邻域内的普通向量来计算像素 - 方面正常信息。在彻底的定量和消融研究中,我们表明,由FASS-MV计算的3D信息的精度接近离线多视图立体声的最先进方法,误差甚至没有一个幅度而不是科麦。然而,同时,FASS-MVS的平均运行时间估计单个深度和正常地图的距离小于ColMAP的14%,允许在1-中执行全高清图像的在线和增量处理2 Hz。
translated by 谷歌翻译
学习的视频压缩方法在赶上其速率 - 失真(R-D)性能时,追赶传统视频编解码器的许多承诺。然而,现有的学习视频压缩方案受预测模式和固定网络框架的绑定限制。它们无法支持各种帧间预测模式,从而不适用于各种场景。在本文中,为了打破这种限制,我们提出了一种多功能学习的视频压缩(VLVC)框架,它使用一个模型来支持所有可能的预测模式。具体而言,为了实现多功能压缩,我们首先构建一个运动补偿模块,该模块应用用于在空间空间中的加权三线性翘曲的多个3D运动矢量字段(即,Voxel流量)。 Voxel流量传达了时间参考位置的信息,有助于与框架设计中的帧间预测模式分离。其次,在多参考帧预测的情况下,我们应用流预测模块以预测具有统一多项式函数的准确运动轨迹。我们表明流量预测模块可以大大降低体素流的传输成本。实验结果表明,我们提出的VLVC不仅支持各种设置中的多功能压缩,而且还通过MS-SSIM的最新VVC标准实现了可比的R-D性能。
translated by 谷歌翻译
在许多重要的科学和工程应用中发现了卷数据。渲染此数据以高质量和交互速率为苛刻的应用程序(例如虚拟现实)的可视化化,即使使用专业级硬件也无法实现。我们介绍了Fovolnet - 一种可显着提高数量数据可视化的性能的方法。我们开发了一种具有成本效益的渲染管道,该管道稀疏地对焦点进行了量度,并使用深层神经网络重建了全帧。 FOVEATED渲染是一种优先考虑用户焦点渲染计算的技术。这种方法利用人类视觉系统的属性,从而在用户视野的外围呈现数据时节省了计算资源。我们的重建网络结合了直接和内核预测方法,以产生快速,稳定和感知令人信服的输出。凭借纤细的设计和量化的使用,我们的方法在端到端框架时间和视觉质量中都优于最先进的神经重建技术。我们对系统的渲染性能,推理速度和感知属性进行了广泛的评估,并提供了与竞争神经图像重建技术的比较。我们的测试结果表明,Fovolnet始终在保持感知质量的同时,在传统渲染上节省了大量时间。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
可靠地定量自然和人为气体释放(例如,从海底进入海洋的自然和人为气体释放(例如,Co $ _2 $,甲烷),最终是大气,是一个具有挑战性的任务。虽然船舶的回声探测器允许在水中检测水中的自由气,但是即使从较大的距离中,精确量化需要诸如未获得的升高速度和气泡尺寸分布的参数。光学方法的意义上是互补的,即它们可以提供从近距离的单个气泡或气泡流的高时和空间分辨率。在这一贡献中,我们介绍了一种完整的仪器和评估方法,用于光学气泡流特征。专用仪器采用高速深海立体声摄像机系统,可在部署在渗透网站以进行以后的自动分析时录制泡泡图像的Tbleabytes。对于几分钟的短序列可以获得泡特性,然后将仪器迁移到其他位置,或者以自主间隔模式迁移到几天内,以捕获由于电流和压力变化和潮汐循环引起的变化。除了报告泡沫特征的步骤旁边,我们仔细评估了可达准确性并提出了一种新颖的校准程序,因为由于缺乏点对应,仅使用气泡的剪影。该系统已成功运营,在太平洋高达1000万水深,以评估甲烷通量。除了样品结果外,我们还会报告在开发期间汲取的故障案例和经验教训。
translated by 谷歌翻译
培训和测试监督对象检测模型需要大量带有地面真相标签的图像。标签定义图像中的对象类及其位置,形状以及可能的其他信息,例如姿势。即使存在人力,标签过程也非常耗时。我们引入了一个新的标签工具,用于2D图像以及3D三角网格:3D标记工具(3DLT)。这是一个独立的,功能丰富和跨平台软件,不需要安装,并且可以在Windows,MacOS和基于Linux的发行版上运行。我们不再像当前工具那样在每个图像上分别标记相同的对象,而是使用深度信息从上述图像重建三角形网格,并仅在上述网格上标记一次对象。我们使用注册来简化3D标记,离群值检测来改进2D边界框的计算和表面重建,以将标记可能性扩展到大点云。我们的工具经过最先进的方法测试,并且在保持准确性和易用性的同时,它极大地超过了它们。
translated by 谷歌翻译
360 {\ Deg}成像最近遭受了很大的关注;然而,其角度分辨率比窄视野(FOV)透视图像相对较低,因为它通过使用具有相同传感器尺寸的鱼眼透镜而被捕获。因此,它有利于超声解析360 {\ DEG}图像。已经制造了一些尝试,但大多数是常规的投影(ERP),尽管尽管存在纬度依赖性失真,但仍然是360 {\ DEG}图像表示的方式之一。在这种情况下,随着输出高分辨率(HR)图像始终处于与低分辨率(LR)输入相同的ERP格式,当将HR图像转换为其他投影类型时可能发生另一信息丢失。在本文中,我们提出了从LR 360 {\ Deg}图像产生连续球面图像表示的新颖框架,旨在通过任意360 {\ deg}预测给定球形坐标处的RGB值。图像投影。具体地,我们首先提出了一种特征提取模块,该特征提取模块表示基于IcosaheDron的球面数据,并有效地提取球面上的特征。然后,我们提出了一种球形本地隐式图像功能(SLIIF)来预测球形坐标处的RGB值。这样,Spheresr在任意投影型下灵活地重建HR图像。各种基准数据集的实验表明,我们的方法显着超越了现有方法。
translated by 谷歌翻译
椭圆测量技术允许测量材料的极化信息,需要具有不同灯和传感器配置的光学组件的精确旋转。这会导致繁琐的捕获设备,在实验室条件下仔细校准,并且在很长的获取时间,通常按照每个物体几天的顺序。最近的技术允许捕获偏振偏光的反射率信息,但仅限于单个视图,或涵盖所有视图方向,但仅限于单个均匀材料制成的球形对象。我们提出了稀疏椭圆测量法,这是一种便携式偏光获取方法,同时同时捕获极化SVBRDF和3D形状。我们的手持设备由现成的固定光学组件组成。每个物体的总收购时间在二十分钟之间变化,而不是天数。我们开发了一个完整的极化SVBRDF模型,其中包括分散和镜面成分以及单个散射,并通过生成模型来设计一种新型的极化逆渲染算法,并通过数据增强镜面反射样品的数据增强。我们的结果表明,与现实世界对象捕获的极化BRDF的最新基础数据集有很强的一致性。
translated by 谷歌翻译
有效的点云压缩对于虚拟和混合现实,自动驾驶和文化遗产等应用至关重要。在本文中,我们为动态点云几何压缩提出了一个基于深度学习的框架间编码方案。我们提出了一种有损的几何压缩方案,该方案通过使用新的预测网络,使用先前的框架来预测当前帧的潜在表示。我们提出的网络利用稀疏的卷积使用层次多尺度3D功能学习来使用上一个帧编码当前帧。我们在目标坐标上采用卷积来将上一个帧的潜在表示为当前帧的降采样坐标,以预测当前帧的特征嵌入。我们的框架通过使用学习的概率分解熵模型来压缩预测功能的残差和实际特征。在接收器中,解码器层次结构通过逐步重新嵌入功能嵌入来重建当前框架。我们将我们的模型与基于最先进的视频点云压缩(V-PCC)和基于几何的点云压缩(G-PCC)方案进行了比较,该方案由Moving Picture Experts Group(MPEG)标准化。我们的方法实现了91%以上的BD率Bjontegaard三角洲率)降低了G-PCC,针对V-PCC框架内编码模式的BD率降低了62%以上,而对于V-PC。使用HEVC,基于PCC P框架的框架间编码模式。
translated by 谷歌翻译
捕获比窄FOV相机的宽视野(FOV)相机,其捕获更大的场景区域,用于许多应用,包括3D重建,自动驾驶和视频监控。然而,广角图像包含违反针孔摄像机模型底层的假设的扭曲,导致对象失真,估计场景距离,面积和方向困难,以及防止在未造成的图像上使用现成的深层模型。下游计算机视觉任务。图像整流,旨在纠正这些扭曲,可以解决这些问题。本文从转换模型到整流方法的广角图像整流的全面调查进展。具体地,我们首先介绍了不同方法中使用的相机模型的详细描述和讨论。然后,我们总结了几种失真模型,包括径向失真和投影失真。接下来,我们审查了传统的基于几何图像整流方法和基于深度学习的方法,其中前者将失真参数估计作为优化问题,并且后者通过利用深神经网络的力量来将其作为回归问题。我们评估在公共数据集上最先进的方法的性能,并显示虽然两种方法都可以实现良好的结果,但这些方法仅适用于特定的相机型号和失真类型。我们还提供了强大的基线模型,并对合成数据集和真实世界广角图像进行了对不同失真模型的实证研究。最后,我们讨论了几个潜在的研究方向,预计将来进一步推进这一领域。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
Physically based rendering of complex scenes can be prohibitively costly with a potentially unbounded and uneven distribution of complexity across the rendered image. The goal of an ideal level of detail (LoD) method is to make rendering costs independent of the 3D scene complexity, while preserving the appearance of the scene. However, current prefiltering LoD methods are limited in the appearances they can support due to their reliance of approximate models and other heuristics. We propose the first comprehensive multi-scale LoD framework for prefiltering 3D environments with complex geometry and materials (e.g., the Disney BRDF), while maintaining the appearance with respect to the ray-traced reference. Using a multi-scale hierarchy of the scene, we perform a data-driven prefiltering step to obtain an appearance phase function and directional coverage mask at each scale. At the heart of our approach is a novel neural representation that encodes this information into a compact latent form that is easy to decode inside a physically based renderer. Once a scene is baked out, our method requires no original geometry, materials, or textures at render time. We demonstrate that our approach compares favorably to state-of-the-art prefiltering methods and achieves considerable savings in memory for complex scenes.
translated by 谷歌翻译