在本文中,我们介绍了RISP,这是一种减少的指令尖峰处理器。虽然大多数尖峰神经处理器都是基于大脑或大脑的概念,但我们为简化而不是复杂的尖峰处理器提供了案例。因此,它具有离散的集成周期,可配置的泄漏等等。我们介绍了RISP的计算模型,并突出了其简单性的好处。我们展示了它如何帮助开发用于简单计算任务的手部神经网络,并详细介绍如何使用它来简化使用更复杂的机器学习技术构建的神经网络,并演示其与其他尖峰神经过程相似的性能。
translated by 谷歌翻译
神经形态计算机通过模拟人脑进行计算,并使用极低的功率。预计将来对于节能计算是必不可少的。尽管它们主要用于尖峰基于神经网络的机器学习应用程序,但已知神经形态计算机是Turing-Complete,因此能够进行通用计算。但是,为了充分意识到它们的通用,节能计算的潜力,重要的是要设计有效的编码数字机制。当前的编码方法的适用性有限,可能不适合通用计算。在本文中,我们将虚拟神经元视为整数和理性数字的编码机制。我们评估虚拟神经元在物理和模拟神经形态硬件上的性能,并表明它可以使用基于混合信号的Memristor神经形态处理器平均使用23 nj的能量执行加法操作。我们还通过在某些MU回复功能中使用它来证明其实用性,这些功能是通用计算的构建块。
translated by 谷歌翻译
突触塑性是神经网络中自我监管无监督学习的强大方法。最近利益的复苏已经在利用人工神经网络(ANNS)以及延期学习的突触可塑性方面开发。已经证明了可塑性来提高这些网络的学习能力在概括到新的环境环境。然而,这些训练有素的网络的长期稳定性尚未被检查。这项工作表明,利用ANN的可塑性导致不稳定于训练期间使用的预先指定的寿命。这种不稳定可以导致奖励寻求行为的戏剧性下降,或者快速导致到达环境终端状态。在许多训练时间范围内的两个不同环境中,这种行为被认为是在许多不同环境中的几种可塑性规则保持一致:推车极衡问题和四足球运动问题。我们通过使用尖刺神经元来提出这种不稳定性的解决方案。
translated by 谷歌翻译
我们在Nengo框架上介绍了基于纯净的神经网络(SNN)的基于稀疏分布式存储器(SDM)。我们基于Furber等人,2004年之前的工作,使用N-y-y of-of-modes实现SDM。作为SDM设计的组成部分,我们已经在Nengo上实现了使用SNN的相关矩阵存储器(CMM)。我们的SNN实施采用漏水集成和火(LIF)在Nengo上尖刺神经元模型。我们的目标是了解基于SNN的SDMS与传统SDMS相比如何进行。为此,我们在Nengo模拟了基于常规和基于SNN的SDM和CMM。我们观察到基于SNN的模型类似于传统的模型。为了评估不同SNN的性能,我们使用Adaptive-Lif,Spiking整流线性单元和Izhikevich模型重复实验并获得了类似的结果。我们得出结论,使用内存的神经元制定一些类型的关联存储器,其内存容量和其他功能类似于没有SNN的性能,确实可行。最后,我们已经实现了一个应用程序,其中使用N-M个代码编码的Mnist图像与其标签相关联并存储在基于SNN的SDM中。
translated by 谷歌翻译
这项研究提出了依赖电压突触可塑性(VDSP),这是一种新型的脑启发的无监督的本地学习规则,用于在线实施HEBB对神经形态硬件的可塑性机制。拟议的VDSP学习规则仅更新了突触后神经元的尖峰的突触电导,这使得相对于标准峰值依赖性可塑性(STDP)的更新数量减少了两倍。此更新取决于突触前神经元的膜电位,该神经元很容易作为神经元实现的一部分,因此不需要额外的存储器来存储。此外,该更新还对突触重量进行了正规化,并防止重复刺激时的重量爆炸或消失。进行严格的数学分析以在VDSP和STDP之间达到等效性。为了验证VDSP的系统级性能,我们训练一个单层尖峰神经网络(SNN),以识别手写数字。我们报告85.01 $ \ pm $ 0.76%(平均$ \ pm $ s.d。)对于MNIST数据集中的100个输出神经元网络的精度。在缩放网络大小时,性能会提高(400个输出神经元的89.93 $ \ pm $ 0.41%,500个神经元为90.56 $ \ pm $ 0.27),这验证了大规模计算机视觉任务的拟议学习规则的适用性。有趣的是,学习规则比STDP更好地适应输入信号的频率,并且不需要对超参数进行手动调整。
translated by 谷歌翻译
Emergence of deep neural networks (DNNs) has raised enormous attention towards artificial neural networks (ANNs) once again. They have become the state-of-the-art models and have won different machine learning challenges. Although these networks are inspired by the brain, they lack biological plausibility, and they have structural differences compared to the brain. Spiking neural networks (SNNs) have been around for a long time, and they have been investigated to understand the dynamics of the brain. However, their application in real-world and complicated machine learning tasks were limited. Recently, they have shown great potential in solving such tasks. Due to their energy efficiency and temporal dynamics there are many promises in their future development. In this work, we reviewed the structures and performances of SNNs on image classification tasks. The comparisons illustrate that these networks show great capabilities for more complicated problems. Furthermore, the simple learning rules developed for SNNs, such as STDP and R-STDP, can be a potential alternative to replace the backpropagation algorithm used in DNNs.
translated by 谷歌翻译
神经形态计算是一个新兴的研究领域,旨在通过整合来自神经科学和深度学习等多学科的理论和技术来开发新的智能系统。当前,已经为相关字段开发了各种软件框架,但是缺乏专门用于基于Spike的计算模型和算法的有效框架。在这项工作中,我们提出了一个基于Python的尖峰神经网络(SNN)模拟和培训框架,又名Spaic,旨在支持脑启发的模型和算法研究,并与深度学习和神经科学的特征集成在一起。为了整合两个压倒性学科的不同方法,以及灵活性和效率之间的平衡,SpaiC设计采用神经科学风格的前端和深度学习后端结构设计。我们提供了广泛的示例,包括神经回路模拟,深入的SNN学习和神经形态应用,展示了简洁的编码样式和框架的广泛可用性。 Spaic是一个专用的基于SPIKE的人工智能计算平台,它将显着促进新模型,理论和应用的设计,原型和验证。具有用户友好,灵活和高性能,它将有助于加快神经形态计算研究的快速增长和广泛的适用性。
translated by 谷歌翻译
由于它们的低能量消耗,对神经形态计算设备上的尖刺神经网络(SNNS)越来越兴趣。最近的进展使培训SNNS在精度方面开始与传统人工神经网络(ANNS)进行竞争,同时在神经胸壁上运行时的节能。然而,培训SNNS的过程仍然基于最初为ANNS开发的密集的张量操作,这不利用SNN的时空稀疏性质。我们在这里介绍第一稀疏SNN BackPropagation算法,该算法与最新的现有技术实现相同或更好的准确性,同时显着更快,更高的记忆力。我们展示了我们对不同复杂性(时尚 - MNIST,神经影像学 - MNIST和Spiking Heidelberg数字的真实数据集的有效性,在不失精度的情况下实现了高达150倍的后向通行证的加速,而不会减少精度。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
我们提出了Memprop,即采用基于梯度的学习来培训完全的申请尖峰神经网络(MSNNS)。我们的方法利用固有的设备动力学来触发自然产生的电压尖峰。这些由回忆动力学发出的尖峰本质上是类似物,因此完全可区分,这消除了尖峰神经网络(SNN)文献中普遍存在的替代梯度方法的需求。回忆性神经网络通常将备忘录集成为映射离线培训网络的突触,或者以其他方式依靠关联学习机制来训练候选神经元的网络。相反,我们直接在循环神经元和突触的模拟香料模型上应用了通过时间(BPTT)训练算法的反向传播。我们的实现是完全的综合性,因为突触重量和尖峰神经元都集成在电阻RAM(RRAM)阵列上,而无需其他电路来实现尖峰动态,例如模数转换器(ADCS)或阈值比较器。结果,高阶电物理效应被充分利用,以在运行时使用磁性神经元的状态驱动动力学。通过朝着非同一梯度的学习迈进,我们在以前报道的几个基准上的轻巧密集的完全MSNN中获得了高度竞争的准确性。
translated by 谷歌翻译
Spiking neural networks (SNN) are a viable alternative to conventional artificial neural networks when energy efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains. The training of SNN has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of neurons from the output error. The loss function can then be evaluated locally for every neuron. Incorporating the desire values into the STDP weight update leads to global error minimization and increasing classification accuracy. At the same time, the neuron dynamics and computational efficiency of STDP are maintained, making it a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. Furthermore, we show that desire backpropagation is computationally less complex than backpropagation in traditional neural networks.
translated by 谷歌翻译
尖峰神经网络(SNN)提供了一个新的计算范式,能够高度平行,实时处理。光子设备是设计与SNN计算范式相匹配的高带宽,平行体系结构的理想选择。 CMO和光子元件的协整允许将低损耗的光子设备与模拟电子设备结合使用,以更大的非线性计算元件的灵活性。因此,我们在整体硅光子学(SIPH)过程上设计和模拟了光电尖峰神经元电路,该过程复制了超出泄漏的集成和火(LIF)之外有用的尖峰行为。此外,我们探索了两种学习算法,具有使用Mach-Zehnder干涉法(MZI)网格作为突触互连的片上学习的潜力。实验证明了随机反向传播(RPB)的变体,并在简单分类任务上与标准线性回归的性能相匹配。同时,将对比性HEBBIAN学习(CHL)规则应用于由MZI网格组成的模拟神经网络,以进行随机输入输出映射任务。受CHL训练的MZI网络的性能比随机猜测更好,但不符合理想神经网络的性能(没有MZI网格施加的约束)。通过这些努力,我们证明了协调的CMO和SIPH技术非常适合可扩展的SNN计算体系结构的设计。
translated by 谷歌翻译
过去十年来,人们对人工智能(AI)的兴趣激增几乎完全由人工神经网络(ANN)的进步驱动。尽管ANN为许多以前棘手的问题设定了最先进的绩效,但它们需要大量的数据和计算资源进行培训,并且由于他们采用了监督的学习,他们通常需要知道每个培训示例的正确标记的响应,并限制它们对现实世界域的可扩展性。尖峰神经网络(SNN)是使用更多类似脑部神经元的ANN的替代方法,可以使用无监督的学习来发现输入数据中的可识别功能,而又不知道正确的响应。但是,SNN在动态稳定性方面挣扎,无法匹配ANN的准确性。在这里,我们展示了SNN如何克服文献中发现的许多缺点,包括为消失的尖峰问题提供原则性解决方案,以优于所有现有的浅SNN,并等于ANN的性能。它在使用无标记的数据和仅1/50的训练时期使用无监督的学习时完成了这一点(标记数据仅用于最终的简单线性读数层)。该结果使SNN成为可行的新方法,用于使用未标记的数据集快速,准确,有效,可解释的机器学习。
translated by 谷歌翻译
This paper presents a Neuromorphic Starter Kit, which has been designed to help a variety of research groups perform research, exploration and real-world demonstrations of brain-based, neuromorphic processors and hardware environments. A prototype kit has been built and tested. We explain the motivation behind the kit, its design and composition, and a prototype physical demonstration.
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
神经形态工程由于其作为研究领域的巨大潜力而​​集中了大量研究人员的努力,以寻找对生物神经系统的优势的利用,而整个大脑的优势是设计更有效,更真实的 - 有能力的应用程序。为了开发尽可能接近生物学的应用,使用了尖峰神经网络(SNN),被认为是生物学上的,并构成了第三代人工神经网络(ANN)。由于某些基于SNN的应用程序可能需要存储数据才能以后使用,因此在数字电路中既存在,又以某种形式,在生物学中,需要尖峰内存。这项工作介绍了内存的尖峰实现,这是计算机架构中最重要的组件之一,在设计完全尖峰计算机时可能至关重要。在设计这种尖峰内存的过程中,还实施了不同的中间组件和测试。测试是在大三角帆神经形态平台上进行的,并允许验证用于构建所构图的方法。此外,这项工作深入研究了如何使用这种方法构建尖峰块,并包括IT和其他类似作品中使用的方法的比较,该作品着重于尖峰组件的设计,其中包括尖峰逻辑门和尖峰记忆。所有实施的块和开发的测试均可在公共存储库中提供。
translated by 谷歌翻译
穗状花序的神经形状硬件占据了深度神经网络(DNN)的更节能实现的承诺,而不是GPU的标准硬件。但这需要了解如何在基于事件的稀疏触发制度中仿真DNN,否则能量优势丢失。特别地,解决序列处理任务的DNN通常采用难以使用少量尖峰效仿的长短期存储器(LSTM)单元。我们展示了许多生物神经元的面部,在每个尖峰后缓慢的超积极性(AHP)电流,提供了有效的解决方案。 AHP电流可以轻松地在支持多舱神经元模型的神经形状硬件中实现,例如英特尔的Loihi芯片。滤波近似理论解释为什么AHP-Neurons可以模拟LSTM单元的功能。这产生了高度节能的时间序列分类方法。此外,它为实现了非常稀疏的大量大型DNN来实现基础,这些大型DNN在文本中提取单词和句子之间的关系,以便回答有关文本的问题。
translated by 谷歌翻译
在这项工作中,我们认为寻找人工通用智能(AGI)应该从比人类水平的智能低得多的水平开始。自然界中智能行为的环境是由于有机体与周围环境相互作用的情况,这种环境可能会随着时间的流逝而改变,并对有机体施加压力,以便学习新的行为或环境模型。我们的假设是,学习是通过解释代理在环境中作用时的感觉反馈而发生的。为此,需要一个身体和反应性环境。我们评估了一种进化生物学启发的人工神经网络的方法,该神经网络从名为“人工通用智能的神经进化”(Nagi)的环境反应中学习,这是一个低水平AGI的框架。该方法允许使用自适应突触的随机启用尖峰神经网络的进化络合,该神经网络控制在可变环境中实例化的代理。这种配置使我们能够基准基准控制器的适应性和通用性。可变环境中所选的任务是食品觅食,逻辑门的仿真和卡特杆平衡。这三个任务通过相当小的网络拓扑成功解决,因此,它打开了实验更复杂的任务和方案的可能性,其中课程学习是有益的。
translated by 谷歌翻译
用于神经形态计算的生物学启发的尖峰神经元是具有动态状态变量的非线性滤波器 - 与深度学习中使用的无状态神经元模型非常不同。 Notel Intel的神经形态研究处理器Loihi 2的下一个版本支持各种具有完全可编程动态的最有状态尖峰神经元模型。在这里,我们展示了先进的尖峰神经元模型,可用于有效地处理仿真Loihi 2硬件的仿真实验中的流数据。在一个示例中,共振和火(RF)神经元用于计算短时间傅里叶变换(STFT),其具有类似的计算复杂度,但是输出带宽的47倍而不是传统的STFT。在另一个例子中,我们描述了一种使用时间率RF神经元的光学流量估计算法,其需要比传统的基于DNN的解决方案超过90倍。我们还展示了有前途的初步结果,使用BackPropagation培训RF神经元进行音频分类任务。最后,我们表明,跳跃的血管谐振器 - RF神经元的变体 - 重复耳蜗的新特性,并激励一种有效的基于尖峰的谱图编码器。
translated by 谷歌翻译
更具体地说,神经系统能够简单有效地解决复杂的问题,超过现代计算机。在这方面,神经形态工程是一个研究领域,重点是模仿控制大脑的基本原理,以开发实现此类计算能力的系统。在该领域中,生物启发的学习和记忆系统仍然是要解决的挑战,这就是海马涉及的地方。正是大脑的区域充当短期记忆,从而从大脑皮层的所有感觉核中学习,非结构化和快速存储信息及其随后的回忆。在这项工作中,我们提出了一个基于海马的新型生物启发的记忆模型,具有学习记忆的能力,从提示中回顾它们(与其他内容相关的记忆的一部分),甚至在尝试时忘记记忆通过相同的提示学习其他人。该模型已在使用尖峰神经网络上在大型摩托车硬件平台上实现,并进行了一组实验和测试以证明其正确且预期的操作。所提出的基于SPIKE的内存模型仅在接收输入,能提供节能的情况下才能生成SPIKES,并且需要7个时间步,用于学习步骤和6个时间段来召回以前存储的存储器。这项工作介绍了基于生物启发的峰值海马记忆模型的第一个硬件实现,为开发未来更复杂的神经形态系统的发展铺平了道路。
translated by 谷歌翻译