深度神经网络(DNNS)在训练过程中容易受到后门攻击的影响。该模型以这种方式损坏正常起作用,但是当输入中的某些模式触发时,会产生预定义的目标标签。现有防御通常依赖于通用后门设置的假设,其中有毒样品共享相同的均匀扳机。但是,最近的高级后门攻击表明,这种假设在动态后门中不再有效,在动态后门中,触发者因输入而异,从而击败了现有的防御。在这项工作中,我们提出了一种新颖的技术BEATRIX(通过革兰氏矩阵检测)。 BEATRIX利用革兰氏矩阵不仅捕获特征相关性,还可以捕获表示形式的适当高阶信息。通过从正常样本的激活模式中学习类条件统计,BEATRIX可以通过捕获激活模式中的异常来识别中毒样品。为了进一步提高识别目标标签的性能,BEATRIX利用基于内核的测试,而无需对表示分布进行任何先前的假设。我们通过与最先进的防御技术进行了广泛的评估和比较来证明我们的方法的有效性。实验结果表明,我们的方法在检测动态后门时达到了91.1%的F1得分,而最新技术只能达到36.9%。
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
A recent trojan attack on deep neural network (DNN) models is one insidious variant of data poisoning attacks. Trojan attacks exploit an effective backdoor created in a DNN model by leveraging the difficulty in interpretability of the learned model to misclassify any inputs signed with the attacker's chosen trojan trigger. Since the trojan trigger is a secret guarded and exploited by the attacker, detecting such trojan inputs is a challenge, especially at run-time when models are in active operation. This work builds STRong Intentional Perturbation (STRIP) based run-time trojan attack detection system and focuses on vision system. We intentionally perturb the incoming input, for instance by superimposing various image patterns, and observe the randomness of predicted classes for perturbed inputs from a given deployed model-malicious or benign. A low entropy in predicted classes violates the input-dependence property of a benign model and implies the presence of a malicious input-a characteristic of a trojaned input. The high efficacy of our method is validated through case studies on three popular and contrasting datasets: MNIST, CIFAR10 and GTSRB. We achieve an overall false acceptance rate (FAR) of less than 1%, given a preset false rejection rate (FRR) of 1%, for different types of triggers. Using CIFAR10 and GTSRB, we have empirically achieved result of 0% for both FRR and FAR. We have also evaluated STRIP robustness against a number of trojan attack variants and adaptive attacks.
translated by 谷歌翻译
典型的深神经网络(DNN)后门攻击基于输入中嵌入的触发因素。现有的不可察觉的触发因素在计算上昂贵或攻击成功率低。在本文中,我们提出了一个新的后门触发器,该扳机易于生成,不可察觉和高效。新的触发器是一个均匀生成的三维(3D)二进制图案,可以水平和/或垂直重复和镜像,并将其超级贴在三通道图像上,以训练后式DNN模型。新型触发器分散在整个图像中,对单个像素产生微弱的扰动,但共同拥有强大的识别模式来训练和激活DNN的后门。我们还通过分析表明,随着图像的分辨率提高,触发因素越来越有效。实验是使用MNIST,CIFAR-10和BTSR数据集上的RESNET-18和MLP模型进行的。在无遗象的方面,新触发的表现优于现有的触发器,例如Badnet,Trojaned NN和隐藏的后门。新的触发因素达到了几乎100%的攻击成功率,仅将分类准确性降低了不到0.7%-2.4%,并使最新的防御技术无效。
translated by 谷歌翻译
深度神经网络众所周知,很容易受到对抗性攻击和后门攻击的影响,在该攻击中,对输入的微小修改能够误导模型以给出错误的结果。尽管已经广泛研究了针对对抗性攻击的防御措施,但有关减轻后门攻击的调查仍处于早期阶段。尚不清楚防御这两次攻击之间是否存在任何连接和共同特征。我们对对抗性示例与深神网络的后门示例之间的联系进行了全面的研究,以寻求回答以下问题:我们可以使用对抗检测方法检测后门。我们的见解是基于这样的观察结果,即在推理过程中,对抗性示例和后门示例都有异常,与良性​​样本高度区分。结果,我们修改了四种现有的对抗防御方法来检测后门示例。广泛的评估表明,这些方法可靠地防止后门攻击,其准确性比检测对抗性实例更高。这些解决方案还揭示了模型灵敏度,激活空间和特征空间中对抗性示例,后门示例和正常样本的关系。这能够增强我们对这两次攻击和防御机会的固有特征的理解。
translated by 谷歌翻译
后门攻击已被证明是对深度学习模型的严重安全威胁,并且检测给定模型是否已成为后门成为至关重要的任务。现有的防御措施主要建立在观察到后门触发器通常尺寸很小或仅影响几个神经元激活的观察结果。但是,在许多情况下,尤其是对于高级后门攻击,违反了上述观察结果,阻碍了现有防御的性能和适用性。在本文中,我们提出了基于新观察的后门防御范围。也就是说,有效的后门攻击通常需要对中毒训练样本的高预测置信度,以确保训练有素的模型具有很高的可能性。基于此观察结果,Dtinspector首先学习一个可以改变最高信心数据的预测的补丁,然后通过检查在低信心数据上应用学习补丁后检查预测变化的比率来决定后门的存在。对五次后门攻击,四个数据集和三种高级攻击类型的广泛评估证明了拟议防御的有效性。
translated by 谷歌翻译
As a critical threat to deep neural networks (DNNs), backdoor attacks can be categorized into two types, i.e., source-agnostic backdoor attacks (SABAs) and source-specific backdoor attacks (SSBAs). Compared to traditional SABAs, SSBAs are more advanced in that they have superior stealthier in bypassing mainstream countermeasures that are effective against SABAs. Nonetheless, existing SSBAs suffer from two major limitations. First, they can hardly achieve a good trade-off between ASR (attack success rate) and FPR (false positive rate). Besides, they can be effectively detected by the state-of-the-art (SOTA) countermeasures (e.g., SCAn). To address the limitations above, we propose a new class of viable source-specific backdoor attacks, coined as CASSOCK. Our key insight is that trigger designs when creating poisoned data and cover data in SSBAs play a crucial role in demonstrating a viable source-specific attack, which has not been considered by existing SSBAs. With this insight, we focus on trigger transparency and content when crafting triggers for poisoned dataset where a sample has an attacker-targeted label and cover dataset where a sample has a ground-truth label. Specifically, we implement $CASSOCK_{Trans}$ and $CASSOCK_{Cont}$. While both they are orthogonal, they are complementary to each other, generating a more powerful attack, called $CASSOCK_{Comp}$, with further improved attack performance and stealthiness. We perform a comprehensive evaluation of the three $CASSOCK$-based attacks on four popular datasets and three SOTA defenses. Compared with a representative SSBA as a baseline ($SSBA_{Base}$), $CASSOCK$-based attacks have significantly advanced the attack performance, i.e., higher ASR and lower FPR with comparable CDA (clean data accuracy). Besides, $CASSOCK$-based attacks have effectively bypassed the SOTA defenses, and $SSBA_{Base}$ cannot.
translated by 谷歌翻译
在对抗机器学习中,防止对深度学习系统的攻击的新防御能力在释放更强大的攻击后不久就会破坏。在这种情况下,法医工具可以通过追溯成功的根本原因来为现有防御措施提供宝贵的补充,并为缓解措施提供前进的途径,以防止将来采取类似的攻击。在本文中,我们描述了我们为开发用于深度神经网络毒物攻击的法医追溯工具的努力。我们提出了一种新型的迭代聚类和修剪解决方案,该解决方案修剪了“无辜”训练样本,直到所有剩余的是一组造成攻击的中毒数据。我们的方法群群训练样本基于它们对模型参数的影响,然后使用有效的数据解读方法来修剪无辜簇。我们从经验上证明了系统对三种类型的肮脏标签(后门)毒物攻击和三种类型的清洁标签毒药攻击的功效,这些毒物跨越了计算机视觉和恶意软件分类。我们的系统在所有攻击中都达到了98.4%的精度和96.8%的召回。我们还表明,我们的系统与专门攻击它的四种抗纤维法措施相对强大。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Backdoor attacks have emerged as one of the major security threats to deep learning models as they can easily control the model's test-time predictions by pre-injecting a backdoor trigger into the model at training time. While backdoor attacks have been extensively studied on images, few works have investigated the threat of backdoor attacks on time series data. To fill this gap, in this paper we present a novel generative approach for time series backdoor attacks against deep learning based time series classifiers. Backdoor attacks have two main goals: high stealthiness and high attack success rate. We find that, compared to images, it can be more challenging to achieve the two goals on time series. This is because time series have fewer input dimensions and lower degrees of freedom, making it hard to achieve a high attack success rate without compromising stealthiness. Our generative approach addresses this challenge by generating trigger patterns that are as realistic as real-time series patterns while achieving a high attack success rate without causing a significant drop in clean accuracy. We also show that our proposed attack is resistant to potential backdoor defenses. Furthermore, we propose a novel universal generator that can poison any type of time series with a single generator that allows universal attacks without the need to fine-tune the generative model for new time series datasets.
translated by 谷歌翻译
最近的研究表明,深层神经网络容易受到不同类型的攻击,例如对抗性攻击,数据中毒攻击和后门攻击。其中,后门攻击是最狡猾的攻击,几乎可以在深度学习管道的每个阶段发生。因此,后门攻击吸引了学术界和行业的许多兴趣。但是,大多数现有的后门攻击方法对于某些轻松的预处理(例如常见数据转换)都是可见的或脆弱的。为了解决这些限制,我们提出了一种强大而无形的后门攻击,称为“毒药”。具体而言,我们首先利用图像结构作为目标中毒区域,并用毒药(信息)填充它们以生成触发图案。由于图像结构可以在数据转换期间保持其语义含义,因此这种触发模式对数据转换本质上是强大的。然后,我们利用深度注射网络将这种触发模式嵌入封面图像中,以达到隐身性。与现有流行的后门攻击方法相比,毒药的墨水在隐形和健壮性方面都优于表现。通过广泛的实验,我们证明了毒药不仅是不同数据集和网络体系结构的一般性,而且对于不同的攻击场景也很灵活。此外,它对许多最先进的防御技术也具有非常强烈的抵抗力。
translated by 谷歌翻译
We conduct a systematic study of backdoor vulnerabilities in normally trained Deep Learning models. They are as dangerous as backdoors injected by data poisoning because both can be equally exploited. We leverage 20 different types of injected backdoor attacks in the literature as the guidance and study their correspondences in normally trained models, which we call natural backdoor vulnerabilities. We find that natural backdoors are widely existing, with most injected backdoor attacks having natural correspondences. We categorize these natural backdoors and propose a general detection framework. It finds 315 natural backdoors in the 56 normally trained models downloaded from the Internet, covering all the different categories, while existing scanners designed for injected backdoors can at most detect 65 backdoors. We also study the root causes and defense of natural backdoors.
translated by 谷歌翻译
后门深度学习(DL)模型的行为通常在清洁输入上,但在触发器输入时不端行为,因为后门攻击者希望为DL模型部署构成严重后果。最先进的防御是限于特定的后门攻击(源无关攻击)或在该机器学习(ML)专业知识或昂贵的计算资源中不适用于源友好的攻击。这项工作观察到所有现有的后门攻击都具有不可避免的内在弱点,不可转换性,即触发器输入劫持劫持模型,但不能对另一个尚未植入同一后门的模型有效。通过此密钥观察,我们提出了不可转换性的反向检测(NTD)来识别运行时在运行时的模型欠测试(MUT)的触发输入。特定,NTD允许潜在的回溯静电预测输入的类别。同时,NTD利用特征提取器(FE)来提取输入的特征向量,并且从其预测类随机拾取的一组样本,然后比较FE潜在空间中的输入和样本之间的相似性。如果相似性低,则输入是对逆势触发输入;否则,良性。 FE是一个免费的预训练模型,私下从开放平台保留。随着FE和MUT来自不同来源,攻击者非常不可能将相同的后门插入其中两者。由于不可转换性,不能将突变处工作的触发效果转移到FE,使NTD对不同类型的后门攻击有效。我们在三个流行的定制任务中评估NTD,如面部识别,交通标志识别和一般动物分类,结果确认NDT具有高效率(低假验收率)和具有低检测延迟的可用性(低误报率)。
translated by 谷歌翻译
被证明深度神经网络(DNN)被证明是易受后门攻击的影响。后门通常通过将后门触发注入训练示例中的目标DNN嵌入到目标DNN中,这可能导致目标DNN消除附加的输入附加的输入。现有的后门检测方法通常需要访问原始中毒训练数据,目标DNN的参数,或对每个给定输入的预测置信度,这在许多实际应用中是不切实际的,例如,在设备上部署的DNN。我们地址DNN是完全黑盒的黑匣子硬标签检测问题,只能访问其最终输出标签。我们从优化角度方面接近这个问题,并表明回程检测的目标受到对抗目标的界定。进一步的理论和实证研究表明,这种对抗性物镜导致具有高度偏斜分布的溶液;在后门感染的例子的对抗性地图中经常观察到奇点,我们称之为对抗性奇点现象。基于该观察,我们提出了对抗极值分析(AEVA)来检测黑匣子神经网络中的后门。 AEVA基于来自Monte-Carlo梯度估计计算的对抗地图的极值分析。在多个流行的任务和后门攻击中通过广泛的实验证明,我们的方法有效地检测了黑匣子硬标的场景下的后门攻击。
translated by 谷歌翻译
普遍的后门是由动态和普遍的输入扰动触发的。它们可以被攻击者故意注射,也可以自然存在于经过正常训练的模型中。它们的性质与传统的静态和局部后门不同,可以通过扰动带有一些固定图案的小输入区域来触发,例如带有纯色的贴片。现有的防御技术对于传统后门非常有效。但是,它们可能对普遍的后门无法正常工作,尤其是在后门去除和模型硬化方面。在本文中,我们提出了一种针对普遍的后门,包括天然和注射后门的新型模型硬化技术。我们基于通过特殊转换层增强的编码器架构来开发一般的普遍攻击。该攻击可以对现有的普遍后门攻击进行建模,并通过类距离进行量化。因此,使用我们在对抗训练中攻击的样品可以使模型与这些后门漏洞相比。我们对9个具有15个模型结构的9个数据集的评估表明,我们的技术可以平均扩大阶级距离59.65%,精度降解且没有稳健性损失,超过了五种硬化技术,例如对抗性训练,普遍的对抗训练,Moth,Moth等, 。它可以将六次普遍后门攻击的攻击成功率从99.06%降低到1.94%,超过七种最先进的后门拆除技术。
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNN)容易受到后门攻击的影响。感染的模型正常在良性输入上行为,而其预测将被迫对对抗数据进行攻击特定目标。已经开发了几种检测方法来区分投入来防御这种攻击。这些防御依赖的常见假设是受感染模型提取的清洁和对抗进口的潜在表示之间存在大的统计差异。但是,虽然缺乏假设是真实的重要性,但缺乏全面的研究。在本文中,我们专注于它并研究以下相关问题:1)统计差异的性质是什么? 2)如何在不损害攻击强度的情况下有效减少它们? 3)这种减少对基于差异的防御有何影响?我们的工作是在三个问题上进行的。首先,通过引入最大平均差异(MMD)作为指标,我们确定多级表示的统计差异都是大的,而不仅仅是最高级别。然后,我们通过在训练后门模型期间向损耗功能添加多级MMD约束来提出统计差异减少方法(SDRM),以有效降低差异。最后,检查了三种典型的基于差异的检测方法。这些防御的F1分数下降到定期训练的后门型号的90%-100%,在所有两个数据集,四个模型架构和四种攻击方法上用SDRM培训的型号上的60%-70%。结果表明,所提出的方法可用于增强现有攻击以逃避后门检测算法。
translated by 谷歌翻译
特洛伊木马后门是针对神经网络(NN)分类器的中毒攻击,对手试图利用(高度理想的)模型重用属性将特洛伊木马植入模型参数中,以通过中毒训练过程进行后门漏洞。大多数针对特洛伊木马攻击的防御措施都假设了白盒设置,其中防守者可以访问NN的内部状态,或者能够通过它进行后传播。在这项工作中,我们提出了一个更实用的黑盒防御,称为Trojdef,只能在NN上进行前进。 Trojdef试图通过监视输入因随机噪声反复扰动预测置信度的变化来识别和滤除特洛伊木马输入(即用Trojan触发器增强的输入)。我们根据预测输出得出一个函数,该函数称为预测置信度,以决定输入示例是否为特洛伊木马。直觉是,由于错误分类仅取决于触发因素,因此特洛伊木马的输入更加稳定,而由于分类特征的扰动,良性输入会受到损失。通过数学分析,我们表明,如果攻击者在注入后门时是完美的,则将训练特洛伊木马感染的模型以学习适当的预测置信度结合,该模型用于区分特洛伊木马和良性输入,并在任意扰动下。但是,由于攻击者在注入后门时可能不是完美的,因此我们将非线性转换引入了预测置信度,以提高实际环境中的检测准确性。广泛的经验评估表明,即使分类器体系结构,培训过程或超参数变化,Trojdef的表现明显优于州的防御能力,并且在不同的设置下也很稳定。
translated by 谷歌翻译
最近的研究表明,深神经网络(DNN)易受对抗性攻击的影响,包括逃避和后门(中毒)攻击。在防守方面,有密集的努力,改善了对逃避袭击的经验和可怜的稳健性;然而,对后门攻击的可稳健性仍然很大程度上是未开发的。在本文中,我们专注于认证机器学习模型稳健性,反对一般威胁模型,尤其是后门攻击。我们首先通过随机平滑技术提供统一的框架,并展示如何实例化以证明对逃避和后门攻击的鲁棒性。然后,我们提出了第一个强大的培训过程Rab,以平滑训练有素的模型,并证明其稳健性对抗后门攻击。我们派生机学习模型的稳健性突出了培训的机器学习模型,并证明我们的鲁棒性受到紧张。此外,我们表明,可以有效地训练强大的平滑模型,以适用于诸如k最近邻分类器的简单模型,并提出了一种精确的平滑训练算法,该算法消除了从这种模型的噪声分布采样采样的需要。经验上,我们对MNIST,CIFAR-10和Imagenet数据集等DNN,差异私有DNN和K-NN模型等不同机器学习(ML)型号进行了全面的实验,并为反卧系攻击提供认证稳健性的第一个基准。此外,我们在SPAMBase表格数据集上评估K-NN模型,以展示所提出的精确算法的优点。对多元化模型和数据集的综合评价既有关于普通训练时间攻击的进一步强劲学习策略的多样化模型和数据集的综合评价。
translated by 谷歌翻译
随着深度神经网络(DNN)的广泛应用,后门攻击逐渐引起了人们的关注。后门攻击是阴险的,中毒模型在良性样本上的表现良好,只有在给定特定输入时才会触发,这会导致神经网络产生不正确的输出。最先进的后门攻击工作是通过数据中毒(即攻击者注入中毒样品中的数据集中)实施的,并且用该数据集训练的模型被后门感染。但是,当前研究中使用的大多数触发因素都是在一小部分图像上修补的固定图案,并且经常被明显错误地标记,这很容易被人类或防御方法(例如神经清洁和前哨)检测到。同样,DNN很难在没有标记的情况下学习,因为它们可能会忽略小图案。在本文中,我们提出了一种基于频域的广义后门攻击方法,该方法可以实现后门植入而不会错标和访问训练过程。它是人类看不见的,能够逃避常用的防御方法。我们在三个数据集(CIFAR-10,STL-10和GTSRB)的无标签和清洁标签案例中评估了我们的方法。结果表明,我们的方法可以在所有任务上实现高攻击成功率(高于90%),而不会在主要任务上进行大量绩效降解。此外,我们评估了我们的方法的旁路性能,以进行各种防御措施,包括检测训练数据(即激活聚类),输入的预处理(即过滤),检测输入(即Sentinet)和检测模型(即神经清洁)。实验结果表明,我们的方法对这种防御能力表现出极好的鲁棒性。
translated by 谷歌翻译
最近的作品表明,深度学习模型容易受到后门中毒攻击的影响,在这些攻击中,这些攻击灌输了与外部触发模式或物体(例如贴纸,太阳镜等)的虚假相关性。我们发现这种外部触发信号是不必要的,因为可以使用基于旋转的图像转换轻松插入高效的后门。我们的方法通过旋转有限数量的对象并将其标记错误来构建中毒数据集;一旦接受过培训,受害者的模型将在运行时间推理期间做出不良的预测。它表现出明显的攻击成功率,同时通过有关图像分类和对象检测任务的全面实证研究来保持清洁绩效。此外,我们评估了标准数据增强技术和针对我们的攻击的四种不同的后门防御措施,发现它们都无法作为一致的缓解方法。正如我们在图像分类和对象检测应用程序中所示,我们的攻击只能在现实世界中轻松部署在现实世界中。总体而言,我们的工作突出了一个新的,简单的,物理上可实现的,高效的矢量,用于后门攻击。我们的视频演示可在https://youtu.be/6jif8wnx34m上找到。
translated by 谷歌翻译