自我监督的预审查能够为各种视觉文档理解(VDU)任务产生可转移的表示。但是,尚未研究此类表示在测试时间时适应新分配变化的能力。我们提出了Docta,这是一种用于文档的新型测试时间适应方法,该方法通过掩盖的视觉语言建模来利用交叉模式自我观察学习以及伪标签,以适应\ textit {source}域中学习的模型,以使其{source}域中为一个未标记的\ textit {textit {目标}域在测试时间。我们还使用现有的公共数据集介绍了新的基准测试,用于各种VDU任务,包括实体识别,键值提取和文档视觉问题回答任务,其中Doctta将源模型性能提高到1.79 \%(F1分数),3.43 \%(3.43 \%)(F1得分)和17.68 \%(ANLS得分),同时大大降低了目标数据的校准误差。
translated by 谷歌翻译
由于其有效的模型架构以及大规模未标记的扫描/数字出生的文件的优势,在各种视觉上丰富的文档理解任务中已经证明了文本和布局的预先培训。我们提出了具有新的预培训任务的Layoutlmv2架构,以在单个多模态框架中模拟文本,布局和图像之间的交互。具体地,对于双流多模态变压器编码器,LayOutLMV2不仅使用现有屏蔽的视觉语言建模任务,还使用新的文本图像对齐和文本图像匹配任务,这使得它更好地捕获跨模块交互在预训练阶段。同时,它还将空间感知的自我注意机制集成到变压器架构中,以便模型可以完全理解不同文本块之间的相对位置关系。实验结果表明,LayoutLMV2优于大幅度的LayOutlm,并在大量下游的下游富有的文件理解任务中实现了新的最先进的结果,包括Funsd(0.7895 $ \至0.8420美元),电源线(0.9493 $ \至0.9601美元),Srie(0.9524 $ \至0.9781美元),Kleister-NDA(0.8340 $ \ 0.8520美元),RVL-CDIP(0.9443 $ \至0.9564美元),DOCVQA(0.7295 $ \至0.8672美元) 。我们使我们的模型和代码公开可用于\ url {https://aka.ms/layoutlmv2}。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
问答(QA)在回答定制域中的问题方面表现出了令人印象深刻的进展。然而,域的适应性仍然是质量检查系统最难以捉摸的挑战之一,尤其是当质量检查系统在源域中训练但部署在不同的目标域中时。在这项工作中,我们调查了问题分类对质量检查域适应的潜在好处。我们提出了一个新颖的框架:问题回答的问题分类(QC4QA)。具体而言,采用问题分类器将问题类分配给源数据和目标数据。然后,我们通过伪标记以自我监督的方式进行联合培训。为了优化,源和目标域之间的域间差异通过最大平均差异(MMD)距离降低。我们还最大程度地减少了同一问题类别的质量质量适应性表现的QA样本中的类内部差异。据我们所知,这是质量检查域适应中的第一部作品,以通过自我监督的适应来利用问题分类。我们证明了拟议的QC4QA的有效性,并在多个数据集上针对最先进的基线进行了一致的改进。
translated by 谷歌翻译
自我监督的预训练技术在文档AI中取得了显着进步。大多数多模式的预训练模型都使用蒙版的语言建模目标来学习文本模式的双向表示,但是它们在图像模式的预训练目标方面有所不同。这种差异增加了多模式表示学习的困难。在本文中,我们建议\ textbf {layoutlmv3}为文档AI预训练多模式变压器,并具有统一的文本和图像掩蔽。此外,LayoutLMV3通过单词斑点对齐目标进行了预训练,可以通过预测是否掩盖文本的相应图像贴片来学习交叉模式对齐。简单的统一体系结构和培训目标使Layoutlmv3成为以文本为中心和以图像为中心的文档AI任务的通用预培训模型。实验结果表明,LayoutLMV3不仅在以文本为中心的任务中实现最先进的绩效,包括形式的理解,收据理解和文档视觉问题回答,而且在以图像为中心的任务(例如文档图像分类和文档布局)中分析。代码和模型可在\ url {https://aka.ms/layoutlmv3}上公开获得。
translated by 谷歌翻译
事实证明,多模式文档预训练的模型在各种视觉上富裕的文档理解(VRDU)任务中非常有效。尽管现有的文档预先培训模型在VRDU的标准基准上取得了出色的性能,但它们建模和利用文档上的视觉和语言之间的互动的方式阻碍了他们无法获得更好的概括能力和更高的准确性。在这项工作中,我们主要从监督信号的角度研究了VRDU视觉联合表示学习的问题。具体而言,提出了一种称为BI-VLDOC的预训练范式,其中设计了双向视觉监督策略和视觉性混合注意机制,以完全探索并利用这两种方式之间的相互作用,以学习更强的交叉交叉方式 - 具有更丰富语义的模式文档表示。 Bi-Vldoc受益于学习丰富的跨模式文档表示形式,显着提高了三个广泛使用文档的最新性能,理解基准,包括形式的理解(从85.14%到93.44%),收据信息提取(从96.01%到97.84%)和文档分类(从96.08%到97.12%)。在文档视觉质量检查中,BI-VLDOC与以前的单个模型方法相比,实现了最先进的性能。
translated by 谷歌翻译
Recent advances in NLP are brought by a range of large-scale pretrained language models (PLMs). These PLMs have brought significant performance gains for a range of NLP tasks, circumventing the need to customize complex designs for specific tasks. However, most current work focus on finetuning PLMs on a domain-specific datasets, ignoring the fact that the domain gap can lead to overfitting and even performance drop. Therefore, it is practically important to find an appropriate method to effectively adapt PLMs to a target domain of interest. Recently, a range of methods have been proposed to achieve this purpose. Early surveys on domain adaptation are not suitable for PLMs due to the sophisticated behavior exhibited by PLMs from traditional models trained from scratch and that domain adaptation of PLMs need to be redesigned to take effect. This paper aims to provide a survey on these newly proposed methods and shed light in how to apply traditional machine learning methods to newly evolved and future technologies. By examining the issues of deploying PLMs for downstream tasks, we propose a taxonomy of domain adaptation approaches from a machine learning system view, covering methods for input augmentation, model optimization and personalization. We discuss and compare those methods and suggest promising future research directions.
translated by 谷歌翻译
由于文档的复杂布局,提取文档的信息是一项挑战。大多数以前的研究以一种自我监督的方式开发了多模式预训练的模型。在本文中,我们专注于包含文本和布局信息的单词块的嵌入学习,并提出UTEL,这是具有统一文本和布局预训练的语言模型。具体而言,我们提出了两个预训练任务:布局学习的周围单词预测(SWP),以及对识别不同单词块的单词嵌入(CWE)的对比度学习。此外,我们用1D剪裁的相对位置嵌入了常用的一维位置。这样,掩盖布局语言建模(MLLM)的联合训练和两个新提出的任务可以以统一的方式在语义和空间特征之间进行相互作用。此外,提议的UTEL可以通过删除1D位置嵌入,同时保持竞争性能来处理任意长度的序列。广泛的实验结果表明,UTEL学会了比以前在各种下游任务上的方法更好的联合表示形式,尽管不需要图像模式。代码可在\ url {https://github.com/taosong2019/utel}中获得。
translated by 谷歌翻译
在视觉上丰富的文件(VRD)上的结构化文本理解是文档智能的重要组成部分。由于VRD中的内容和布局的复杂性,结构化文本理解是一项有挑战性的任务。大多数现有的研究将此问题与两个子任务结尾:实体标记和实体链接,这需要整体地了解令牌和段级别的文档的上下文。但是,很少的工作已经关注有效地从不同层次提取结构化数据的解决方案。本文提出了一个名为structext的统一框架,它对于处理两个子任务是灵活的,有效的。具体地,基于变压器,我们引入了一个段令牌对齐的编码器,以处理不同粒度水平的实体标记和实体链接任务。此外,我们设计了一种具有三个自我监督任务的新型预训练策略,以学习更丰富的代表性。 Structext使用现有屏蔽的视觉语言建模任务和新句子长度预测和配对框方向任务,以跨文本,图像和布局结合多模态信息。我们评估我们在分段级别和令牌级别的结构化文本理解的方法,并表明它优于最先进的同行,在Funsd,Srie和Ephoie数据集中具有显着优越的性能。
translated by 谷歌翻译
视觉域的适应性(DA)试图将经过训练的模型转移到分发转移的未看到的,未标记的域,但是方法通常着重于适应卷积神经网络体系结构,并使用有监督的成像网表示。在这项工作中,我们将重点转移到将现代体系结构改编成对象识别的重点 - 越来越流行的视觉变压器(VIT)以及基于自我监督的学习(SSL)的现代预测。受到最新SSL方法的启发,该方法是基于通过掩盖或裁剪生成的部分图像输入的学习的 - 要么通过学习预测缺失的像素或学习代表性的不断增强来进行这种增强 - 我们提出了简单的两阶段适应性PACMAC自我监督VIT的算法。 PACMAC首先在汇总源和目标数据上执行内域SSL,以学习任务歧视性特征,然后探究该模型的预测一致性,这些歧视性的一致性是通过新的注意力条件掩盖策略生成的一组部分目标输入,以识别自我候选者的可靠候选者-训练。我们的简单方法导致对使用VIT和对标准对象识别基准的自我监督初始化的竞争方法的性能一致。可在https://github.com/virajprabhu/pacmac上找到代码
translated by 谷歌翻译
受益于从特定情况(源)收集的相当大的像素级注释,训练有素的语义分段模型表现得非常好,但由于大域移位而导致的新情况(目标)失败。为了缓解域间隙,先前的跨域语义分段方法始终在域对齐期间始终假设源数据和目标数据的共存。但是,在实际方案中访问源数据可能会引发隐私问题并违反知识产权。为了解决这个问题,我们专注于一个有趣和具有挑战性的跨域语义分割任务,其中仅向目标域提供训练源模型。具体地,我们提出了一种称为ATP的统一框架,其包括三种方案,即特征对准,双向教学和信息传播。首先,我们设计了课程熵最小化目标,以通过提供的源模型隐式对准目标功能与看不见的源特征。其次,除了vanilla自我训练中的正伪标签外,我们是第一个向该领域引入负伪标签的,并开发双向自我训练策略,以增强目标域中的表示学习。最后,采用信息传播方案来通过伪半监督学习进一步降低目标域内的域内差异。综合与跨城市驾驶数据集的广泛结果验证\ TextBF {ATP}产生最先进的性能,即使是需要访问源数据的方法。
translated by 谷歌翻译
Models should be able to adapt to unseen data during test-time to avoid performance drops caused by inevitable distribution shifts in real-world deployment scenarios. In this work, we tackle the practical yet challenging test-time adaptation (TTA) problem, where a model adapts to the target domain without accessing the source data. We propose a simple recipe called \textit{Data-efficient Prompt Tuning} (DePT) with two key ingredients. First, DePT plugs visual prompts into the vision Transformer and only tunes these source-initialized prompts during adaptation. We find such parameter-efficient finetuning can efficiently adapt the model representation to the target domain without overfitting to the noise in the learning objective. Second, DePT bootstraps the source representation to the target domain by memory bank-based online pseudo-labeling. A hierarchical self-supervised regularization specially designed for prompts is jointly optimized to alleviate error accumulation during self-training. With much fewer tunable parameters, DePT demonstrates not only state-of-the-art performance on major adaptation benchmarks VisDA-C, ImageNet-C, and DomainNet-126, but also superior data efficiency, i.e., adaptation with only 1\% or 10\% data without much performance degradation compared to 100\% data. In addition, DePT is also versatile to be extended to online or multi-source TTA settings.
translated by 谷歌翻译
部署的ML模型的基本要求是从与培训不同的测试分布中汲取的数据概括。解决此问题的一个流行解决方案是,仅使用未标记的数据将预训练的模型调整为新的域。在本文中,我们关注该问题的挑战性变体,其中访问原始源数据受到限制。虽然完全测试时间适应(FTTA)和无监督的域适应性(UDA)密切相关,但由于大多数UDA方法需要访问源数据,因此UDA的进展不容易适用于TTA。因此,我们提出了一种新方法,即Cattan,它通过放松了通过新颖的深层子空间对准策略来放松访问整个源数据的需求,从而弥合了UDA和FTTA。通过为源数据存储的子空间基础设置的最小开销,Cattan在适应过程中可以在源数据和目标数据之间进行无监督的对齐。通过对多个2D和3D Vision基准测试(Imagenet-C,Office-31,OfficeHome,Domainnet,PointDa-10)和模型体系结构进行广泛的实验评估,我们在FTTA性能方面表现出显着提高。此外,即使使用固有健壮的模型,预训练的VIT表示以及目标域中的样本可用性低,我们也会对对齐目标的实用性做出许多关键发现。
translated by 谷歌翻译
生物医学机器阅读理解(生物医学MRC)旨在理解复杂的生物医学叙事,并协助医疗保健专业人员从中检索信息。现代神经网络的MRC系统的高性能取决于高质量的大规模,人为宣传的培训数据集。在生物医学领域中,创建此类数据集的一个至关重要的挑战是域知识的要求,引起了标记数据的稀缺性以及从标记的通用(源)域转移学习到生物医学(目标)域的需求。然而,由于主题方差,通用和生物医学领域之间的边际分布存在差异。因此,从在通用域上训练的模型到生物医学领域的模型直接转移学会的表示可能会损害模型的性能。我们为生物医学机器阅读理解任务(BioAdapt-MRC)提供了基于对抗性学习的域适应框架,这是一种基于神经网络的方法,可解决一般和生物医学域数据之间边际分布中的差异。 Bioadapt-MRC松弛了生成伪标签的需求,以训练表现出色的生物医学MRC模型。我们通过将生物ADAPT-MRC与三种广泛使用的基准生物医学MRC数据集进行比较,从而广泛评估了生物ADAPT-MRC的性能-Bioasq-7B,BioASQ-8B和BioASQ-9B。我们的结果表明,如果不使用来自生物医学领域的任何合成或人类通知的数据,Bioadapt-MRC可以在这些数据集中实现最先进的性能。可用性:bioadapt-MRC可作为开放源项目免费获得,\ url {https://github.com/mmahbub/bioadapt-mrc}。
translated by 谷歌翻译
We propose Universal Document Processing (UDOP), a foundation Document AI model which unifies text, image, and layout modalities together with varied task formats, including document understanding and generation. UDOP leverages the spatial correlation between textual content and document image to model image, text, and layout modalities with one uniform representation. With a novel Vision-Text-Layout Transformer, UDOP unifies pretraining and multi-domain downstream tasks into a prompt-based sequence generation scheme. UDOP is pretrained on both large-scale unlabeled document corpora using innovative self-supervised objectives and diverse labeled data. UDOP also learns to generate document images from text and layout modalities via masked image reconstruction. To the best of our knowledge, this is the first time in the field of document AI that one model simultaneously achieves high-quality neural document editing and content customization. Our method sets the state-of-the-art on 9 Document AI tasks, e.g., document understanding and QA, across diverse data domains like finance reports, academic papers, and websites. UDOP ranks first on the leaderboard of the Document Understanding Benchmark (DUE).
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a practical setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named Source HypOthesis Transfer (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and selfsupervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.
translated by 谷歌翻译
Unsupervised pre-training on millions of digital-born or scanned documents has shown promising advances in visual document understanding~(VDU). While various vision-language pre-training objectives are studied in existing solutions, the document textline, as an intrinsic granularity in VDU, has seldom been explored so far. A document textline usually contains words that are spatially and semantically correlated, which can be easily obtained from OCR engines. In this paper, we propose Wukong-Reader, trained with new pre-training objectives to leverage the structural knowledge nested in document textlines. We introduce textline-region contrastive learning to achieve fine-grained alignment between the visual regions and texts of document textlines. Furthermore, masked region modeling and textline-grid matching are also designed to enhance the visual and layout representations of textlines. Experiments show that our Wukong-Reader has superior performance on various VDU tasks such as information extraction. The fine-grained alignment over textlines also empowers Wukong-Reader with promising localization ability.
translated by 谷歌翻译
深度学习模型的最新发展,捕捉作物物候的复杂的时间模式有卫星图像时间序列(坐在),大大高级作物分类。然而,当施加到目标区域从训练区空间上不同的,这些模型差没有任何目标标签由于作物物候区域之间的时间位移进行。为了解决这个无人监督跨区域适应环境,现有方法学域不变特征没有任何目标的监督,而不是时间偏移本身。因此,这些技术提供了SITS只有有限的好处。在本文中,我们提出TimeMatch,一种新的无监督领域适应性方法SITS直接占时移。 TimeMatch由两个部分组成:1)时间位移的估计,其估计具有源极训练模型的未标记的目标区域的时间偏移,和2)TimeMatch学习,它结合了时间位移估计与半监督学习到一个分类适应未标记的目标区域。我们还引进了跨区域适应的开放式访问的数据集与来自欧洲四个不同区域的旁边。在此数据集,我们证明了TimeMatch优于所有竞争的方法,通过11%的在五个不同的适应情景F1-得分,创下了新的国家的最先进的跨区域适应性。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
现在,具有成本效益的深度和红外传感器作为常规RGB传感器的替代方案已成为现实,并且在自主导航和遥控传感等域中具有比RGB的优势。因此,建立计算机视觉和深度学习系统以进行深度和红外数据至关重要。但是,仍然缺乏针对这些模式的大型标签数据集。在这种情况下,将知识从源模式(RGB)的良好标记的大型数据集训练的神经网络转移到在目标模式(深度,红外等)上工作的神经网络具有很大价值。出于内存和隐私等原因,可能无法访问源数据,并且知识转移需要仅与源模型一起使用。我们描述了一个有效的解决方案,插座:无源的跨模式知识转移,用于将知识从一个源模式转移到不同目标模式的具有挑战性的任务,而无需访问与任务相关的源数据。该框架使用配对的任务 - IRRELELERVANT数据以及将目标特征的平均值和方差与源模型中存在的批处理统计信息匹配,从而减少了模态差距。我们通过广泛的实验表明,我们的方法明显优于无法解释模式差距的分类任务的现有无源方法。
translated by 谷歌翻译