Recent advances in NLP are brought by a range of large-scale pretrained language models (PLMs). These PLMs have brought significant performance gains for a range of NLP tasks, circumventing the need to customize complex designs for specific tasks. However, most current work focus on finetuning PLMs on a domain-specific datasets, ignoring the fact that the domain gap can lead to overfitting and even performance drop. Therefore, it is practically important to find an appropriate method to effectively adapt PLMs to a target domain of interest. Recently, a range of methods have been proposed to achieve this purpose. Early surveys on domain adaptation are not suitable for PLMs due to the sophisticated behavior exhibited by PLMs from traditional models trained from scratch and that domain adaptation of PLMs need to be redesigned to take effect. This paper aims to provide a survey on these newly proposed methods and shed light in how to apply traditional machine learning methods to newly evolved and future technologies. By examining the issues of deploying PLMs for downstream tasks, we propose a taxonomy of domain adaptation approaches from a machine learning system view, covering methods for input augmentation, model optimization and personalization. We discuss and compare those methods and suggest promising future research directions.
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
As an important fine-grained sentiment analysis problem, aspect-based sentiment analysis (ABSA), aiming to analyze and understand people's opinions at the aspect level, has been attracting considerable interest in the last decade. To handle ABSA in different scenarios, various tasks are introduced for analyzing different sentiment elements and their relations, including the aspect term, aspect category, opinion term, and sentiment polarity. Unlike early ABSA works focusing on a single sentiment element, many compound ABSA tasks involving multiple elements have been studied in recent years for capturing more complete aspect-level sentiment information. However, a systematic review of various ABSA tasks and their corresponding solutions is still lacking, which we aim to fill in this survey. More specifically, we provide a new taxonomy for ABSA which organizes existing studies from the axes of concerned sentiment elements, with an emphasis on recent advances of compound ABSA tasks. From the perspective of solutions, we summarize the utilization of pre-trained language models for ABSA, which improved the performance of ABSA to a new stage. Besides, techniques for building more practical ABSA systems in cross-domain/lingual scenarios are discussed. Finally, we review some emerging topics and discuss some open challenges to outlook potential future directions of ABSA.
translated by 谷歌翻译
深层语言语言模型(LMS)如Elmo,BERT及其继任者通过预先训练单个模型来迅速缩放自然语言处理的景观,然后是任务特定的微调。此外,像XLM-R和MBERT这样的这种模型的多语言版本使得有希望的零射击交叉传输导致,可能在许多不足和资源不足的语言中实现NLP应用。由于此初步成功,预先接受的模型被用作“通用语言模型”作为不同任务,域和语言的起点。这项工作通过识别通用模型应该能够扩展的七个维度来探讨“普遍性”的概念,即同样良好或相当良好地执行,在不同的环境中有用。我们概述了当前支持这些维度的模型性能的当前理论和经验结果,以及可能有助于解决其当前限制的扩展。通过这项调查,我们为理解大规模上下文语言模型的能力和限制奠定了基础,并帮助辨别研究差距和未来工作的方向,使这些LMS包含多样化和公平的应用,用户和语言现象。
translated by 谷歌翻译
自我监督的预审查能够为各种视觉文档理解(VDU)任务产生可转移的表示。但是,尚未研究此类表示在测试时间时适应新分配变化的能力。我们提出了Docta,这是一种用于文档的新型测试时间适应方法,该方法通过掩盖的视觉语言建模来利用交叉模式自我观察学习以及伪标签,以适应\ textit {source}域中学习的模型,以使其{source}域中为一个未标记的\ textit {textit {目标}域在测试时间。我们还使用现有的公共数据集介绍了新的基准测试,用于各种VDU任务,包括实体识别,键值提取和文档视觉问题回答任务,其中Doctta将源模型性能提高到1.79 \%(F1分数),3.43 \%(3.43 \%)(F1得分)和17.68 \%(ANLS得分),同时大大降低了目标数据的校准误差。
translated by 谷歌翻译
Controllable Text Generation (CTG) is emerging area in the field of natural language generation (NLG). It is regarded as crucial for the development of advanced text generation technologies that are more natural and better meet the specific constraints in practical applications. In recent years, methods using large-scale pre-trained language models (PLMs), in particular the widely used transformer-based PLMs, have become a new paradigm of NLG, allowing generation of more diverse and fluent text. However, due to the lower level of interpretability of deep neural networks, the controllability of these methods need to be guaranteed. To this end, controllable text generation using transformer-based PLMs has become a rapidly growing yet challenging new research hotspot. A diverse range of approaches have emerged in the recent 3-4 years, targeting different CTG tasks which may require different types of controlled constraints. In this paper, we present a systematic critical review on the common tasks, main approaches and evaluation methods in this area. Finally, we discuss the challenges that the field is facing, and put forward various promising future directions. To the best of our knowledge, this is the first survey paper to summarize CTG techniques from the perspective of PLMs. We hope it can help researchers in related fields to quickly track the academic frontier, providing them with a landscape of the area and a roadmap for future research.
translated by 谷歌翻译
自然语言理解(NLU)通过大型基准驱动的大规模进展,与转让学习的研究配对扩大其影响。基准是由一小部分频繁现象的主导,留下了一条长长的不常见现象。在这项工作中,我们反映了问题:转移学习方法足够地解决了长尾的基准训练模型的表现吗?由于基准未列出包括/排除的现象,我们使用宏观级别的宏观尺寸(如经验丰富的类型,主题等)概念化。我们评估通过100个代表性论文转让学习的定性荟萃分析来转移学习研究的趋势nlu。我们的分析问了三个问题:(i)哪个长尾尺寸进行转移学习研究目标? (ii)哪种特性有助于适应方法改善长尾的性能? (iii)哪种方法差距对长尾性能有最大的负面影响?我们对这些问题的答案突出了在长尾的转让学习中的未来研究的主要途径。最后,我们展示了一个案例研究,比较了各种适应方法对临床叙事的性能,以表明系统性开展的元实验如何提供能够沿着这些未来的途径取得进展的见解。
translated by 谷歌翻译
大型审慎的语言模型(PLM)通常是通过微调或提示来适应域或任务的。填充需要修改所有参数,并具有足够的数据以避免过度拟合,同时提示不需要培训,也不需要示例,而是限制性能。取而代之的是,我们通过学习学习一般和适应性PLM之间的差异来为数据和参数有效适应。通过我们提出的动态低级别重新聚体和学识渊博的体系结构控制器,通过模型权重和子层结构来表示这种差异。实验对话完成,低资源抽象摘要以及多域语言建模的实验显示了通过域自适应预处理进行适应时间和性能的改善。消融表明我们的任务自适应重新聚体化(TARP)和模型搜索(TAMS)组件分别改进了其他参数效率转移(如适配器和结构学习方法),例如学习的稀疏。
translated by 谷歌翻译
Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.
translated by 谷歌翻译
Deep domain adaptation has emerged as a new learning technique to address the lack of massive amounts of labeled data. Compared to conventional methods, which learn shared feature subspaces or reuse important source instances with shallow representations, deep domain adaptation methods leverage deep networks to learn more transferable representations by embedding domain adaptation in the pipeline of deep learning. There have been comprehensive surveys for shallow domain adaptation, but few timely reviews the emerging deep learning based methods. In this paper, we provide a comprehensive survey of deep domain adaptation methods for computer vision applications with four major contributions. First, we present a taxonomy of different deep domain adaptation scenarios according to the properties of data that define how two domains are diverged. Second, we summarize deep domain adaptation approaches into several categories based on training loss, and analyze and compare briefly the state-of-the-art methods under these categories. Third, we overview the computer vision applications that go beyond image classification, such as face recognition, semantic segmentation and object detection. Fourth, some potential deficiencies of current methods and several future directions are highlighted.
translated by 谷歌翻译
在过去的十年中,许多深入学习模型都受到了良好的培训,并在各种机器智能领域取得了巨大成功,特别是对于计算机视觉和自然语言处理。为了更好地利用这些训练有素的模型在域内或跨域转移学习情况下,提出了知识蒸馏(KD)和域适应(DA)并成为研究亮点。他们旨在通过原始培训数据从训练有素的模型转移有用的信息。但是,由于隐私,版权或机密性,原始数据并不总是可用的。最近,无数据知识转移范式吸引了吸引人的关注,因为它涉及从训练有素的模型中蒸馏宝贵的知识,而无需访问培训数据。特别是,它主要包括无数据知识蒸馏(DFKD)和源无数据域适应(SFDA)。一方面,DFKD旨在将域名域内知识从一个麻烦的教师网络转移到一个紧凑的学生网络,以进行模型压缩和有效推论。另一方面,SFDA的目标是重用存储在训练有素的源模型中的跨域知识并将其调整为目标域。在本文中,我们对知识蒸馏和无监督域适应的视角提供了全面的数据知识转移,以帮助读者更好地了解目前的研究状况和想法。分别简要审查了这两个领域的应用和挑战。此外,我们对未来研究的主题提供了一些见解。
translated by 谷歌翻译
深度学习已成为解决不同领域中现实世界中问题的首选方法,部分原因是它能够从数据中学习并在广泛的应用程序上实现令人印象深刻的性能。但是,它的成功通常取决于两个假设:(i)精确模型拟合需要大量标记的数据集,并且(ii)培训和测试数据是独立的且分布相同的。因此,不能保证它在看不见的目标域上的性能,尤其是在适应阶段遇到分布数据的数据时。目标域中数据的性能下降是部署深层神经网络的关键问题,这些网络已成功地在源域中的数据训练。通过利用标记的源域数据和未标记的目标域数据来执行目标域中的各种任务,提出了无监督的域适应(UDA)来对抗这一点。 UDA在自然图像处理,视频分析,自然语言处理,时间序列数据分析,医学图像分析等方面取得了令人鼓舞的结果。在本综述中,作为一个快速发展的主题,我们对其方法和应用程序进行了系统的比较。此外,还讨论了UDA与其紧密相关的任务的联系,例如域的概括和分布外检测。此外,突出显示了当前方法和可能有希望的方向的缺陷。
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
基于强大的预训练语言模型(PLM)的密集检索方法(DR)方法取得了重大进步,并已成为现代开放域问答系统的关键组成部分。但是,他们需要大量的手动注释才能进行竞争性,这是不可行的。为了解决这个问题,越来越多的研究作品最近着重于在低资源场景下改善DR绩效。这些作品在培训所需的资源和采用各种技术的资源方面有所不同。了解这种差异对于在特定的低资源场景下选择正确的技术至关重要。为了促进这种理解,我们提供了针对低资源DR的主流技术的彻底结构化概述。根据他们所需的资源,我们将技术分为三个主要类别:(1)仅需要文档; (2)需要文件和问题; (3)需要文档和提问对。对于每种技术,我们都会介绍其一般形式算法,突出显示开放的问题和利弊。概述了有希望的方向以供将来的研究。
translated by 谷歌翻译
机器学习系统通常假设训练和测试分布是相同的。为此,关键要求是开发可以概括到未经看不见的分布的模型。领域泛化(DG),即分销概括,近年来引起了越来越令人利益。域概括处理了一个具有挑战性的设置,其中给出了一个或几个不同但相关域,并且目标是学习可以概括到看不见的测试域的模型。多年来,域概括地区已经取得了巨大进展。本文提出了对该地区最近进步的首次审查。首先,我们提供了域泛化的正式定义,并讨论了几个相关领域。然后,我们彻底审查了与域泛化相关的理论,并仔细分析了泛化背后的理论。我们将最近的算法分为三个类:数据操作,表示学习和学习策略,并为每个类别详细介绍几种流行的算法。第三,我们介绍常用的数据集,应用程序和我们的开放源代码库进行公平评估。最后,我们总结了现有文学,并为未来提供了一些潜在的研究主题。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译
大多数NER方法都依赖于广泛的标记数据进行模型培训,这些数据在低资源场景中挣扎,培训数据有限。与资源丰富的源域相比,现有的主要方法通常会遇到目标域具有不同标签集的挑战,该标签集可以作为类传输和域转移得出的结论。在本文中,我们通过可拔出的提示(Lightner)提出了一个轻巧的调整范式,用于低资源。具体而言,我们构建了实体类别的统一可学习的语言器,以生成实体跨度序列和实体类别,而无需任何标签特定的分类器,从而解决了类转移问题。我们通过将可学习的参数纳入自我发言层作为指导,进一步提出了一个可插入的指导模块,该参数可以重新调节注意力并调整预训练的权重。请注意,我们仅通过修复了预训练的语言模型的整个参数来调整那些插入的模块,从而使我们的方法轻巧且灵活地适合低资源场景,并且可以更好地跨域传输知识。实验结果表明,Lightner可以在标准监督环境中获得可比的性能,并且在低资源设置中优于强大基线。代码在https://github.com/zjunlp/deepke/tree/main/main/example/ner/few-shot中。
translated by 谷歌翻译
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey paper reviews more than forty representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译