深度学习(DL)已在脑电图(EEG)基于脑电图(EEG)的大部分应用中广泛研究,尤其是在过去五年中对于运动成像(MI)分类。 MI-EEG分类的主流DL方法使用卷积神经网络(CNN)利用EEG信号的暂时性模式,这些模式在视觉图像中取得了显着成功。但是,由于视觉图像的统计特征从根本上偏离了脑电图信号,因此出现了一个自然的问题,除了CNN之外是否存在替代网络体系结构。为了解决这个问题,我们提出了一个名为Tensor-CSPNET的新型几何深度学习(GDL)框架,该框架是源自对称阳性(SPD)的EEG信号的空间协方差矩阵(SPD)歧管(SPD)歧管,并完全捕获了使用临时性跨性别模式,并使用现有的深神经网络捕获了现有的深神经网络SPD流形,与许多成功的MI-EEG分类器的经验集成以优化框架。在实验中,张量-CSPNET在两个常用的MI-EEG数据集中的交叉验证和保留方案上达到或略微优于当前最新性能。此外,可视化和可解释性分析还表现出张量-CSPNET对MI-EEG分类的有效性。总而言之,在这项研究中,我们通过将DL方法概括为SPD歧管,为问题提供了可行的答案,该方法表明了MI-EEG分类的特定GDL方法的开始。
translated by 谷歌翻译
基于电动机图像(MI)的脑电脑界面(BCIS)允许通过解码神经生理现象来控制几种应用,这些现象通常通过使用非侵入性技术被脑电图(EEG)记录。尽管在基于MI的BCI的进展方面很大,但脑电图有特定于受试者和各种变化随时间。这些问题指出了提高分类绩效的重大挑战,特别是在独立的方式。为了克服这些挑战,我们提出了Min2Net,这是一个新的端到端多任务学习来解决这项任务。我们将深度度量学习集成到多任务AutoEncoder中,以从脑电图中学习紧凑且识别的潜在表示,并同时执行分类。这种方法降低了预处理的复杂性,导致EEG分类的显着性能改善。实验结果以本语独立的方式表明,MIN2Net优于最先进的技术,在SMR-BCI和OpenBMI数据集中分别实现了6.72%的F1分数提高,以及2.23%。我们证明MIN2NET在潜在代表中提高了歧视信息。本研究表明使用此模型的可能性和实用性为新用户开发基于MI的BCI应用,而无需校准。
translated by 谷歌翻译
传统的脑电脑接口(BCI)需要在使用之前为每个用户提供完整的数据收集,训练和校准阶段。近年来,已经开发了许多主题独立的(SI)BCI。与受试者依赖性(SD)方法相比,这些方法中的许多方法产生较弱的性能,有些方法是计算昂贵的。潜在的真实世界应用程序将极大地受益于更准确,紧凑,并计算高效的主题的BCI。在这项工作中,我们提出了一个名为CCSPNET(卷积公共空间模式网络)的新型主题独立的BCI框架,该框架被训练在大型脑电图(EEG)信号数据库中的电动机图像(MI)范例上,由400个试验组成每54名科目执行两班手机MI任务。所提出的框架应用小波核卷积神经网络(WKCNN)和时间卷积神经网络(TCNN),以表示和提取EEG信号的光谱特征。对于空间特征提取来实现公共空间模式(CSP)算法,并且通过密集的神经网络减少了CSP特征的数量。最后,类标签由线性判别分析(LDA)分类器确定。 CCSPNET评估结果表明,可以具有紧凑的BCI,可实现与复杂和计算昂贵的模型相当的SD和SI最先进的性能。
translated by 谷歌翻译
功能连接是研究大脑振荡活动的关键方法,以便为神经元相互作用的潜在动态提供重要见解,并且主要用于脑活动分析。建立脑电脑界面信息几何的进步,我们提出了一种新颖的框架,它结合了功能连接估计和基于协方差的管道来对精神状态进行分类,例如电机图像。针对每个估算器培训的riemannian分类器,并且集合分类器将决策组合在每个特征空间中。提供了对功能连接估计器的全面评估,并在不同的条件和数据集上评估最佳表演管道,称为岩酮。使用Meta分析在数据集中聚合结果,FUCONE比所有最先进的方法更好地执行。性能增益主要是对特征空间的改进的改进的改进,增加了集合分类器相对于和内部主题间变异性的鲁棒性。
translated by 谷歌翻译
State-of-the-art performance in electroencephalography (EEG) decoding tasks is currently often achieved with either Deep-Learning or Riemannian-Geometry-based decoders. Recently, there is growing interest in Deep Riemannian Networks (DRNs) possibly combining the advantages of both previous classes of methods. However, there are still a range of topics where additional insight is needed to pave the way for a more widespread application of DRNs in EEG. These include architecture design questions such as network size and end-to-end ability as well as model training questions. How these factors affect model performance has not been explored. Additionally, it is not clear how the data within these networks is transformed, and whether this would correlate with traditional EEG decoding. Our study aims to lay the groundwork in the area of these topics through the analysis of DRNs for EEG with a wide range of hyperparameters. Networks were tested on two public EEG datasets and compared with state-of-the-art ConvNets. Here we propose end-to-end EEG SPDNet (EE(G)-SPDNet), and we show that this wide, end-to-end DRN can outperform the ConvNets, and in doing so use physiologically plausible frequency regions. We also show that the end-to-end approach learns more complex filters than traditional band-pass filters targeting the classical alpha, beta, and gamma frequency bands of the EEG, and that performance can benefit from channel specific filtering approaches. Additionally, architectural analysis revealed areas for further improvement due to the possible loss of Riemannian specific information throughout the network. Our study thus shows how to design and train DRNs to infer task-related information from the raw EEG without the need of handcrafted filterbanks and highlights the potential of end-to-end DRNs such as EE(G)-SPDNet for high-performance EEG decoding.
translated by 谷歌翻译
工作记忆(WM)表示在脑海中存储的信息,是人类认知领域的一个基本研究主题。可以监测大脑的电活动的脑电图(EEG)已被广泛用于测量WM的水平。但是,关键的挑战之一是个体差异可能会导致无效的结果,尤其是当既定模型符合陌生主题时。在这项工作中,我们提出了一个具有空间注意力(CS-DASA)的跨主题深层适应模型,以概括跨科目的工作负载分类。首先,我们将EEG时间序列转换为包含空间,光谱和时间信息的多帧EEG图像。首先,CS-DASA中的主题共享模块从源和目标主题中接收多帧的EEG图像数据,并学习了共同的特征表示。然后,在特定于主题的模块中,实现了最大平均差异,以测量重现的内核希尔伯特空间中的域分布差异,这可以为域适应增加有效的罚款损失。此外,采用主题对象的空间注意机制专注于目标图像数据的判别空间特征。在包含13个受试者的公共WM EEG数据集上进行的实验表明,所提出的模型能够达到比现有最新方法更好的性能。
translated by 谷歌翻译
The key to electroencephalography (EEG)-based brain-computer interface (BCI) lies in neural decoding, and its accuracy can be improved by using hybrid BCI paradigms, that is, fusing multiple paradigms. However, hybrid BCIs usually require separate processing processes for EEG signals in each paradigm, which greatly reduces the efficiency of EEG feature extraction and the generalizability of the model. Here, we propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface. It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms. TSCNN automatically learns to extract EEG features in the two paradigms in the training process, and improves the decoding accuracy by 25.4% compared with the MI mode, and 2.6% compared with SSVEP mode in the test data. Moreover, the versatility of TSCNN is verified as it provides considerable performance in both single-mode (70.2% for MI, 93.0% for SSVEP) and hybrid-mode scenarios (95.6% for MI-SSVEP hybrid). Our work will facilitate the real-world applications of EEG-based BCI systems.
translated by 谷歌翻译
基于脑电图(EEG)的脑生物识别技术已被越来越多地用于个人鉴定。传统的机器学习技术以及现代的深度学习方法已采用有希望的结果。在本文中,我们提出了EEG-BBNET,这是一个混合网络,该网络将卷积神经网络(CNN)与图形卷积神经网络(GCNN)集成在一起。 CNN在自动特征提取方面的好处以及GCNN通过图形表示在EEG电极之间学习连通性的能力被共同利用。我们检查了各种连通性度量,即欧几里得距离,皮尔逊的相关系数,相锁定值,相位滞后指数和RHO索引。在由各种脑部计算机界面(BCI)任务组成的基准数据集上评估了所提出的方法的性能,并将其与其他最先进的方法进行了比较。我们发现,使用会议内数据的平均正确识别率最高99.26%,我们的模型在事件相关电位(ERP)任务中的所有基线都优于所有基准。具有Pearson相关性和RHO指数的EEG-BBNET提供了最佳的分类结果。此外,我们的模型使用会议间和任务数据显示出更大的适应性。我们还研究了我们提出的模型的实用性,该模型的电极数量较少。额叶区域上的电极放置似乎最合适,性能损失最少。
translated by 谷歌翻译
Neuropsychological studies suggest that co-operative activities among different brain functional areas drive high-level cognitive processes. To learn the brain activities within and among different functional areas of the brain, we propose LGGNet, a novel neurologically inspired graph neural network, to learn local-global-graph representations of electroencephalography (EEG) for Brain-Computer Interface (BCI). The input layer of LGGNet comprises a series of temporal convolutions with multi-scale 1D convolutional kernels and kernel-level attentive fusion. It captures temporal dynamics of EEG which then serves as input to the proposed local and global graph-filtering layers. Using a defined neurophysiologically meaningful set of local and global graphs, LGGNet models the complex relations within and among functional areas of the brain. Under the robust nested cross-validation settings, the proposed method is evaluated on three publicly available datasets for four types of cognitive classification tasks, namely, the attention, fatigue, emotion, and preference classification tasks. LGGNet is compared with state-of-the-art methods, such as DeepConvNet, EEGNet, R2G-STNN, TSception, RGNN, AMCNN-DGCN, HRNN and GraphNet. The results show that LGGNet outperforms these methods, and the improvements are statistically significant (p<0.05) in most cases. The results show that bringing neuroscience prior knowledge into neural network design yields an improvement of classification performance. The source code can be found at https://github.com/yi-ding-cs/LGG
translated by 谷歌翻译
目的:脑电图(EEG)和肌电图(EMG)是两个非侵入性的生物信号,它们在人类机器界面(HMI)技术(EEG-HMI和EMG-HMI范式)中广泛用于康复,用于康复的物理残疾人。将脑电图和EMG信号成功解码为各自的控制命令是康复过程中的关键步骤。最近,提出了几个基于卷积的神经网络(CNN)架构,它们直接将原始的时间序列信号映射到决策空间中,并同时执行有意义的特征提取和分类的过程。但是,这些网络是根据学习给定生物信号的预期特征量身定制的,并且仅限于单个范式。在这项工作中,我们解决了一个问题,即我们可以构建一个单个体系结构,该架构能够从不同的HMI范式中学习不同的功能并仍然成功地对其进行分类。方法:在这项工作中,我们引入了一个称为Controanet的单个混合模型,该模型基于CNN和Transformer架构,该模型对EEG-HMI和EMG-HMI范式同样有用。 Contranet使用CNN块在模型中引入电感偏置并学习局部依赖性,而变压器块则使用自我注意机制来学习信号中的长距离依赖性,这对于EEG和EMG信号的分类至关重要。主要结果:我们在三个属于EEG-HMI和EMG-HMI范式的公开数据集上评估并比较了Contronet与最先进的方法。 Contranet在所有不同类别任务(2级,3类,4级和10级解码任务)中的表现优于其对应。意义:结果表明,与当前的最新算法状态相比,从不同的HMI范式中学习不同的特征并概述了矛盾。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
脑电图(EEG)解码旨在识别基于非侵入性测量的脑活动的神经处理的感知,语义和认知含量。当应用于在静态,受控的实验室环境中获取的数据时,传统的EEG解码方法取得了适度的成功。然而,开放世界的环境是一个更现实的环境,在影响EEG录音的情况下,可以意外地出现,显着削弱了现有方法的鲁棒性。近年来,由于其在特征提取的卓越容量,深入学习(DL)被出现为潜在的解决方案。它克服了使用浅架构提取的“手工制作”功能或功能的限制,但通常需要大量的昂贵,专业标记的数据 - 并不总是可获得的。结合具有域特定知识的DL可能允许开发即使具有小样本数据,也可以开发用于解码大脑活动的鲁棒方法。虽然已经提出了各种DL方法来解决EEG解码中的一些挑战,但目前缺乏系统的教程概述,特别是对于开放世界应用程序。因此,本文为开放世界EEG解码提供了对DL方法的全面调查,并确定了有前途的研究方向,以激发现实世界应用中的脑电图解码的未来研究。
translated by 谷歌翻译
One of the main challenges in electroencephalogram (EEG) based brain-computer interface (BCI) systems is learning the subject/session invariant features to classify cognitive activities within an end-to-end discriminative setting. We propose a novel end-to-end machine learning pipeline, EEG-NeXt, which facilitates transfer learning by: i) aligning the EEG trials from different subjects in the Euclidean-space, ii) tailoring the techniques of deep learning for the scalograms of EEG signals to capture better frequency localization for low-frequency, longer-duration events, and iii) utilizing pretrained ConvNeXt (a modernized ResNet architecture which supersedes state-of-the-art (SOTA) image classification models) as the backbone network via adaptive finetuning. On publicly available datasets (Physionet Sleep Cassette and BNCI2014001) we benchmark our method against SOTA via cross-subject validation and demonstrate improved accuracy in cognitive activity classification along with better generalizability across cohorts.
translated by 谷歌翻译
目的:提出使用深神经网络(DNN)的新型SSVEP分类方法,提高单通道和用户独立的脑电电脑接口(BCIS)的性能,具有小的数据长度。方法:我们建议与DNN结合使用过滤器组(创建EEG信号的子带分量)。在这种情况下,我们创建了三种不同的模型:经常性的神经网络(FBRNN)分析时域,2D卷积神经网络(FBCNN-2D)处理复谱特征和3D卷积神经网络(FBCNN-3D)分析复杂谱图,我们在本研究中介绍了SSVEP分类的可能输入。我们通过开放数据集培训了我们的神经网络,并构思了它们,以便不需要从最终用户校准:因此,测试主题数据与训练和验证分开。结果:带滤波器银行的DNN超越了类似网络的准确性,在没有相当大的边距(高达4.6%)的情况下,它们甚至更高的边距(高达7.1%)超越了常见的SSVEP分类方法(SVM和FBCCA) 。在使用过滤器银行中的三个DNN中,FBRNN获得了最佳结果,然后是FBCNN-3D,最后由FBCNN-2D获得。结论和意义:滤波器银行允许不同类型的深神经网络,以更有效地分析SSVEP的谐波分量。复谱图比复杂频谱特征和幅度谱进行更多信息,允许FBCNN-3D超越另一个CNN。在具有挑战性的分类问题中获得的平均测试精度(87.3%)和F1分数(0.877)表示施工,经济,快速和低延迟BCIS建设的强大潜力。
translated by 谷歌翻译
目的:卷积神经网络(CNN)在脑部计算机界面(BCI)领域表现出巨大的潜力,因为它们能够直接处理无人工特征提取而直接处理原始脑电图(EEG)。原始脑电图通常表示为二维(2-D)矩阵,由通道和时间点组成,忽略了脑电图的空间拓扑信息。我们的目标是使带有原始脑电图信号的CNN作为输入具有学习EEG空间拓扑特征的能力,并改善其分类性能,同时实质上保持其原始结构。方法:我们提出了一个EEG地形表示模块(TRM)。该模块由(1)从原始脑电图信号到3-D地形图的映射块和(2)从地形图到与输入相同大小的输出的卷积块组成。我们将TRM嵌入了3个广泛使用的CNN中,并在2种不同类型的公开数据集中测试了它们。结果:结果表明,使用TRM后,两个数据集都在两个数据集上提高了3个CNN的分类精度。在模拟驾驶数据集(EBDSDD)和2.83 \%,2.17 \%和2.17 \%\%和2.17 \%和2.00 \%的紧急制动器上,具有TRM的DeepConvnet,Eegnet和ShandowConvnet的平均分类精度提高了4.70 \%,1.29 \%和0.91 \%高γ数据集(HGD)。意义:通过使用TRM来挖掘脑电图的空间拓扑特征,我们在2个数据集上提高了3个CNN的分类性能。另外,由于TRM的输出的大小与输入相同,因此任何具有RAW EEG信号的CNN作为输入可以使用此模块而无需更改原始结构。
translated by 谷歌翻译
在过去的几年中,深度学习用于脑电图(EEG)分类任务一直在迅速增长,但其应用程序受到EEG数据集相对较小的限制。数据扩展包括在培训过程中人为地增加数据集的大小,它一直是在计算机视觉或语音等应用程序中获得最新性能的关键要素。尽管文献中已经提出了一些脑电图数据的增强转换,但它们对跨任务的绩效的积极影响仍然难以捉摸。在这项工作中,我们提出了对主要现有脑电图增强的统一和详尽的分析,该分析在常见的实验环境中进行了比较。我们的结果强调了为睡眠阶段分类和大脑计算机界面界面的最佳数据增强,在某些情况下显示预测功率改善大于10%。
translated by 谷歌翻译
识别准确性和响应时间既批判性均在建筑实际脑电图(EEG)的脑电电脑界面(BCI)领先期。然而,最近的方法在分类准确度或响应时间内损害。本文提出了一种新颖的深度学习方法,旨在基于头皮EEG的显着准确和敏感的电动机图像(MI)识别。双向长期内存(BILSTM),带有注意机制管理,从原始EEG信号中导出相关特征。连接的图形卷积神经网络(GCN)通过与来自整体数据的拓扑结构协作来促进解码性能。 0.4-第二检测框架显着基于个体和群体培训的有效和有效的预测,分别具有98.81%和94.64%的准确性,这取得了卓越的所有最先进的研究。引入的深度特征挖掘方法可以精确地识别来自原始EEG信号的人类运动意图,该信号铺设了将基于EEG的MI识别转换为实用BCI系统。
translated by 谷歌翻译
衡量心理工作量的主要原因是量化执行任务以预测人类绩效的认知成本。不幸的是,一种评估具有一般适用性的心理工作量的方法。这项研究提出了一种新型的自我监督方法,用于从脑电图数据中使用深度学习和持续的大脑率,即认知激活的指标,而无需人类声明性知识,从而从脑电图数据进行了精神负荷建模。该方法是可培训的卷积复发性神经网络,该神经网络可通过空间保留脑电图数据的光谱地形图训练,以适合大脑速率变量。发现证明了卷积层从脑电图数据中学习有意义的高级表示的能力,因为受试者内模型的测试平均绝对百分比误差平均为11%。尽管确实提高了其准确性,但增加了用于处理高级表示序列的长期期内存储层并不重要。发现指出,认知激活的高级高水平表示存在准稳定的块,因为它们可以通过卷积诱导,并且似乎随着时间的流逝而彼此依赖,从而直观地与大脑反应的非平稳性质相匹配。跨主体模型,从越来越多的参与者的数据诱导,因此包含更多的可变性,获得了与受试者内模型相似的精度。这突出了人们在人们之间诱发的高级表示的潜在普遍性,这表明存在非依赖于受试者的认知激活模式。这项研究通过为学者提供一种用于心理工作负载建模的新型计算方法来促进知识的体系,该方法旨在通常适用,不依赖于支持可复制性和可复制性的临时人工制作的模型。
translated by 谷歌翻译
为了开发有效和高效的脑电器界面(BCI)系统,非常需要精确地解码脑电图(EEG)测量的大脑活动。传统作品在不考虑电极之间的拓扑关系的情况下分类EEG信号。然而,神经科学研究越来越强调了脑动力学的网络模式。因此,电极的欧几里德结构可能无法充分反映信号之间的相互作用。为了填补差距,提出了一种基于图形卷积神经网络(GCNS)的新型深度学习框架,以增强在不同类型的电动机图像(MI)任务期间的原始EEG信号的解码性能,同时与电极的功能拓扑关系协作。基于绝对Pearson的总体信号矩阵,建立了EEG电极的图拉普拉斯。由图形卷积层构建的GCNS-NET学会了广义特征。遵循的汇集层减少了维度,并且完全连接的软墨幅层衍射最终预测。已介绍的方法已被证明可以为个性化和群体的预测汇聚。与现有研究相比,它分别在受试者和组级别实现了最高平均准确度,93.056%和88.57%(物理仪数据集),96.24%和80.89%(高伽玛数据集),这表明个人适应性和鲁棒性变化性。此外,在交叉验证的重复实验中,性能稳定地再现。为了得出结论,基于功能拓扑关系的GCNS-Net滤波器EEG信号,该关系管理用于解码脑电机图像的相关特征。
translated by 谷歌翻译
由于其出色的表现,深度学习框架在脑电脑界面(BCI)学习中越来越受欢迎。然而,在单独的分类模型方面,它们被视为黑匣子,因为它们没有提供有关LED它们达到特定决定的任何信息。换句话说,我们不能说服神经生理因素是否引起了高性能或简单的噪音。由于这个缺点,与他们的高性能相比,难以确保足够的可靠性。在这项研究中,我们向BCI提出了可解释的深度学习模式。具体地,我们的目标是对从电动机图像(MI)任务中获得的EEG信号进行分类。此外,我们采用了层次的相关性传播(LRP)到模型,以解释模型导出某些分类输出的原因。我们可视化热图,该热线图表明了地形形式的LRP输出,以证明神经生理因素。此外,我们通过避免主题依赖性来分类脑电图,以学习鲁棒和广义eEG特征。该方法还提供了避免为每个主题建立培训数据的牺牲的优势。通过我们所提出的模型,我们为所有受试者获得了广义的热爱图案。结果,我们可以得出结论,我们的拟议模型提供了神经生理学上可靠的解释。
translated by 谷歌翻译