One of the main challenges in electroencephalogram (EEG) based brain-computer interface (BCI) systems is learning the subject/session invariant features to classify cognitive activities within an end-to-end discriminative setting. We propose a novel end-to-end machine learning pipeline, EEG-NeXt, which facilitates transfer learning by: i) aligning the EEG trials from different subjects in the Euclidean-space, ii) tailoring the techniques of deep learning for the scalograms of EEG signals to capture better frequency localization for low-frequency, longer-duration events, and iii) utilizing pretrained ConvNeXt (a modernized ResNet architecture which supersedes state-of-the-art (SOTA) image classification models) as the backbone network via adaptive finetuning. On publicly available datasets (Physionet Sleep Cassette and BNCI2014001) we benchmark our method against SOTA via cross-subject validation and demonstrate improved accuracy in cognitive activity classification along with better generalizability across cohorts.
translated by 谷歌翻译
传统的脑电脑接口(BCI)需要在使用之前为每个用户提供完整的数据收集,训练和校准阶段。近年来,已经开发了许多主题独立的(SI)BCI。与受试者依赖性(SD)方法相比,这些方法中的许多方法产生较弱的性能,有些方法是计算昂贵的。潜在的真实世界应用程序将极大地受益于更准确,紧凑,并计算高效的主题的BCI。在这项工作中,我们提出了一个名为CCSPNET(卷积公共空间模式网络)的新型主题独立的BCI框架,该框架被训练在大型脑电图(EEG)信号数据库中的电动机图像(MI)范例上,由400个试验组成每54名科目执行两班手机MI任务。所提出的框架应用小波核卷积神经网络(WKCNN)和时间卷积神经网络(TCNN),以表示和提取EEG信号的光谱特征。对于空间特征提取来实现公共空间模式(CSP)算法,并且通过密集的神经网络减少了CSP特征的数量。最后,类标签由线性判别分析(LDA)分类器确定。 CCSPNET评估结果表明,可以具有紧凑的BCI,可实现与复杂和计算昂贵的模型相当的SD和SI最先进的性能。
translated by 谷歌翻译
基于脑电图(EEG)的脑生物识别技术已被越来越多地用于个人鉴定。传统的机器学习技术以及现代的深度学习方法已采用有希望的结果。在本文中,我们提出了EEG-BBNET,这是一个混合网络,该网络将卷积神经网络(CNN)与图形卷积神经网络(GCNN)集成在一起。 CNN在自动特征提取方面的好处以及GCNN通过图形表示在EEG电极之间学习连通性的能力被共同利用。我们检查了各种连通性度量,即欧几里得距离,皮尔逊的相关系数,相锁定值,相位滞后指数和RHO索引。在由各种脑部计算机界面(BCI)任务组成的基准数据集上评估了所提出的方法的性能,并将其与其他最先进的方法进行了比较。我们发现,使用会议内数据的平均正确识别率最高99.26%,我们的模型在事件相关电位(ERP)任务中的所有基线都优于所有基准。具有Pearson相关性和RHO指数的EEG-BBNET提供了最佳的分类结果。此外,我们的模型使用会议间和任务数据显示出更大的适应性。我们还研究了我们提出的模型的实用性,该模型的电极数量较少。额叶区域上的电极放置似乎最合适,性能损失最少。
translated by 谷歌翻译
工作记忆(WM)表示在脑海中存储的信息,是人类认知领域的一个基本研究主题。可以监测大脑的电活动的脑电图(EEG)已被广泛用于测量WM的水平。但是,关键的挑战之一是个体差异可能会导致无效的结果,尤其是当既定模型符合陌生主题时。在这项工作中,我们提出了一个具有空间注意力(CS-DASA)的跨主题深层适应模型,以概括跨科目的工作负载分类。首先,我们将EEG时间序列转换为包含空间,光谱和时间信息的多帧EEG图像。首先,CS-DASA中的主题共享模块从源和目标主题中接收多帧的EEG图像数据,并学习了共同的特征表示。然后,在特定于主题的模块中,实现了最大平均差异,以测量重现的内核希尔伯特空间中的域分布差异,这可以为域适应增加有效的罚款损失。此外,采用主题对象的空间注意机制专注于目标图像数据的判别空间特征。在包含13个受试者的公共WM EEG数据集上进行的实验表明,所提出的模型能够达到比现有最新方法更好的性能。
translated by 谷歌翻译
上肢运动分类将输入信号映射到目标活动,是控制康复机器人技术的关键领域之一。分类器接受了康复系统的培训,以理解上肢无法正常工作的患者的欲望。肌电图(EMG)信号和脑电图(EEG)信号广泛用于上肢运动分类。通过分析实时脑电图和EMG信号的分类结果,系统可以理解用户的意图,并预测人们希望执行的事件。因此,它将为用户提供外部帮助,以协助一个人进行活动。但是,由于嘈杂的环境,并非所有用户都处理有效的脑电图和EMG信号。实时数据收集过程中的噪声污染了数据的有效性。此外,并非所有患者由于肌肉损伤和神经肌肉疾病而处理强大的EMG信号。为了解决这些问题,我们想提出一种新颖的决策级多传感器融合技术。简而言之,该系统将将EEG信号与EMG信号集成,从两个来源检索有效的信息以了解和预测用户的需求,从而提供帮助。通过对包含同时记录的脑电图和EMG信号的公开途径数据集进行测试,我们设法结论了新型系统的可行性和有效性。
translated by 谷歌翻译
基于电动机图像(MI)的脑电脑界面(BCIS)允许通过解码神经生理现象来控制几种应用,这些现象通常通过使用非侵入性技术被脑电图(EEG)记录。尽管在基于MI的BCI的进展方面很大,但脑电图有特定于受试者和各种变化随时间。这些问题指出了提高分类绩效的重大挑战,特别是在独立的方式。为了克服这些挑战,我们提出了Min2Net,这是一个新的端到端多任务学习来解决这项任务。我们将深度度量学习集成到多任务AutoEncoder中,以从脑电图中学习紧凑且识别的潜在表示,并同时执行分类。这种方法降低了预处理的复杂性,导致EEG分类的显着性能改善。实验结果以本语独立的方式表明,MIN2Net优于最先进的技术,在SMR-BCI和OpenBMI数据集中分别实现了6.72%的F1分数提高,以及2.23%。我们证明MIN2NET在潜在代表中提高了歧视信息。本研究表明使用此模型的可能性和实用性为新用户开发基于MI的BCI应用,而无需校准。
translated by 谷歌翻译
目的:脑电图(EEG)和肌电图(EMG)是两个非侵入性的生物信号,它们在人类机器界面(HMI)技术(EEG-HMI和EMG-HMI范式)中广泛用于康复,用于康复的物理残疾人。将脑电图和EMG信号成功解码为各自的控制命令是康复过程中的关键步骤。最近,提出了几个基于卷积的神经网络(CNN)架构,它们直接将原始的时间序列信号映射到决策空间中,并同时执行有意义的特征提取和分类的过程。但是,这些网络是根据学习给定生物信号的预期特征量身定制的,并且仅限于单个范式。在这项工作中,我们解决了一个问题,即我们可以构建一个单个体系结构,该架构能够从不同的HMI范式中学习不同的功能并仍然成功地对其进行分类。方法:在这项工作中,我们引入了一个称为Controanet的单个混合模型,该模型基于CNN和Transformer架构,该模型对EEG-HMI和EMG-HMI范式同样有用。 Contranet使用CNN块在模型中引入电感偏置并学习局部依赖性,而变压器块则使用自我注意机制来学习信号中的长距离依赖性,这对于EEG和EMG信号的分类至关重要。主要结果:我们在三个属于EEG-HMI和EMG-HMI范式的公开数据集上评估并比较了Contronet与最先进的方法。 Contranet在所有不同类别任务(2级,3类,4级和10级解码任务)中的表现优于其对应。意义:结果表明,与当前的最新算法状态相比,从不同的HMI范式中学习不同的特征并概述了矛盾。
translated by 谷歌翻译
尽管能够隔离视觉数据,但人类花了一些时间来检查一块,更不用说数千或数百万个样本了。深度学习模型在现代计算的帮助下有效地处理了相当大的信息。但是,他们可疑的决策过程引起了相当大的关注。最近的研究已经确定了一种新的方法,可以从EEG信号中提取图像特征,并将其与标准图像特征相结合。这些方法使深度学习模型更容易解释,并且还可以更快地将模型收敛。受最近研究的启发,我们开发了一种编码脑电图信号作为图像的有效方法,以促进使用深度学习模型对大脑信号的更微妙的理解。在此类编码方法中,我们使用两个变体对对应于39个图像类的编码EEG信号对六个受试者的分层数据集的基准精度为70%,这远高于现有工作。与纯净的深度学习方法的准确性稍好相比,我们的图像分类方法具有共同的EEG功能的精度为82%。然而,它证明了该理论的生存能力。
translated by 谷歌翻译
在过去的几年中,深度学习用于脑电图(EEG)分类任务一直在迅速增长,但其应用程序受到EEG数据集相对较小的限制。数据扩展包括在培训过程中人为地增加数据集的大小,它一直是在计算机视觉或语音等应用程序中获得最新性能的关键要素。尽管文献中已经提出了一些脑电图数据的增强转换,但它们对跨任务的绩效的积极影响仍然难以捉摸。在这项工作中,我们提出了对主要现有脑电图增强的统一和详尽的分析,该分析在常见的实验环境中进行了比较。我们的结果强调了为睡眠阶段分类和大脑计算机界面界面的最佳数据增强,在某些情况下显示预测功率改善大于10%。
translated by 谷歌翻译
The access to activity of subcortical structures offers unique opportunity for building intention dependent brain-computer interfaces, renders abundant options for exploring a broad range of cognitive phenomena in the realm of affective neuroscience including complex decision making processes and the eternal free-will dilemma and facilitates diagnostics of a range of neurological deceases. So far this was possible only using bulky, expensive and immobile fMRI equipment. Here we present an interpretable domain grounded solution to recover the activity of several subcortical regions from the multichannel EEG data and demonstrate up to 60% correlation between the actual subcortical blood oxygenation level dependent sBOLD signal and its EEG-derived twin. Then, using the novel and theoretically justified weight interpretation methodology we recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei. The described results not only pave the road towards wearable subcortical activity scanners but also showcase an automatic knowledge discovery process facilitated by deep learning technology in combination with an interpretable domain constrained architecture and the appropriate downstream task.
translated by 谷歌翻译
我们展示了一个新的数据集和基准,其目的是在大脑活动和眼球运动的交叉口中推进研究。我们的数据集EEGEYENET包括从三种不同实验范式中收集的356个不同受试者的同时脑电图(EEG)和眼睛跟踪(ET)录像。使用此数据集,我们还提出了一种评估EEG测量的凝视预测的基准。基准由三个任务组成,难度越来越高:左右,角度幅度和绝对位置。我们在该基准测试中运行大量实验,以便根据经典机器学习模型和大型神经网络提供实心基线。我们释放了我们的完整代码和数据,并提供了一种简单且易于使用的界面来评估新方法。
translated by 谷歌翻译
The key to electroencephalography (EEG)-based brain-computer interface (BCI) lies in neural decoding, and its accuracy can be improved by using hybrid BCI paradigms, that is, fusing multiple paradigms. However, hybrid BCIs usually require separate processing processes for EEG signals in each paradigm, which greatly reduces the efficiency of EEG feature extraction and the generalizability of the model. Here, we propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface. It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms. TSCNN automatically learns to extract EEG features in the two paradigms in the training process, and improves the decoding accuracy by 25.4% compared with the MI mode, and 2.6% compared with SSVEP mode in the test data. Moreover, the versatility of TSCNN is verified as it provides considerable performance in both single-mode (70.2% for MI, 93.0% for SSVEP) and hybrid-mode scenarios (95.6% for MI-SSVEP hybrid). Our work will facilitate the real-world applications of EEG-based BCI systems.
translated by 谷歌翻译
我们开发了一种图形用户界面(GUI),可删除,专用于卷积神经网络(CNN)模型培训和脑电图(EEG)解码的可视化。可用功能包括在时间和空间表示方面的模型培训,评估和参数可视化。我们使用良好研究的公共数据集进行了Motor-Immery EEG的公共数据集,并将结果与现有的神经科学知识进行比较。卓越的主要目标是为跨学科的调查人员提供一种快速,简化和用户友好的EEG解码解决方案,以利用脑/神经科学研究中的尖端方法。
translated by 谷歌翻译
深度学习(DL)已在脑电图(EEG)基于脑电图(EEG)的大部分应用中广泛研究,尤其是在过去五年中对于运动成像(MI)分类。 MI-EEG分类的主流DL方法使用卷积神经网络(CNN)利用EEG信号的暂时性模式,这些模式在视觉图像中取得了显着成功。但是,由于视觉图像的统计特征从根本上偏离了脑电图信号,因此出现了一个自然的问题,除了CNN之外是否存在替代网络体系结构。为了解决这个问题,我们提出了一个名为Tensor-CSPNET的新型几何深度学习(GDL)框架,该框架是源自对称阳性(SPD)的EEG信号的空间协方差矩阵(SPD)歧管(SPD)歧管,并完全捕获了使用临时性跨性别模式,并使用现有的深神经网络捕获了现有的深神经网络SPD流形,与许多成功的MI-EEG分类器的经验集成以优化框架。在实验中,张量-CSPNET在两个常用的MI-EEG数据集中的交叉验证和保留方案上达到或略微优于当前最新性能。此外,可视化和可解释性分析还表现出张量-CSPNET对MI-EEG分类的有效性。总而言之,在这项研究中,我们通过将DL方法概括为SPD歧管,为问题提供了可行的答案,该方法表明了MI-EEG分类的特定GDL方法的开始。
translated by 谷歌翻译
为了开发有效和高效的脑电器界面(BCI)系统,非常需要精确地解码脑电图(EEG)测量的大脑活动。传统作品在不考虑电极之间的拓扑关系的情况下分类EEG信号。然而,神经科学研究越来越强调了脑动力学的网络模式。因此,电极的欧几里德结构可能无法充分反映信号之间的相互作用。为了填补差距,提出了一种基于图形卷积神经网络(GCNS)的新型深度学习框架,以增强在不同类型的电动机图像(MI)任务期间的原始EEG信号的解码性能,同时与电极的功能拓扑关系协作。基于绝对Pearson的总体信号矩阵,建立了EEG电极的图拉普拉斯。由图形卷积层构建的GCNS-NET学会了广义特征。遵循的汇集层减少了维度,并且完全连接的软墨幅层衍射最终预测。已介绍的方法已被证明可以为个性化和群体的预测汇聚。与现有研究相比,它分别在受试者和组级别实现了最高平均准确度,93.056%和88.57%(物理仪数据集),96.24%和80.89%(高伽玛数据集),这表明个人适应性和鲁棒性变化性。此外,在交叉验证的重复实验中,性能稳定地再现。为了得出结论,基于功能拓扑关系的GCNS-Net滤波器EEG信号,该关系管理用于解码脑电机图像的相关特征。
translated by 谷歌翻译
目的:提出使用深神经网络(DNN)的新型SSVEP分类方法,提高单通道和用户独立的脑电电脑接口(BCIS)的性能,具有小的数据长度。方法:我们建议与DNN结合使用过滤器组(创建EEG信号的子带分量)。在这种情况下,我们创建了三种不同的模型:经常性的神经网络(FBRNN)分析时域,2D卷积神经网络(FBCNN-2D)处理复谱特征和3D卷积神经网络(FBCNN-3D)分析复杂谱图,我们在本研究中介绍了SSVEP分类的可能输入。我们通过开放数据集培训了我们的神经网络,并构思了它们,以便不需要从最终用户校准:因此,测试主题数据与训练和验证分开。结果:带滤波器银行的DNN超越了类似网络的准确性,在没有相当大的边距(高达4.6%)的情况下,它们甚至更高的边距(高达7.1%)超越了常见的SSVEP分类方法(SVM和FBCCA) 。在使用过滤器银行中的三个DNN中,FBRNN获得了最佳结果,然后是FBCNN-3D,最后由FBCNN-2D获得。结论和意义:滤波器银行允许不同类型的深神经网络,以更有效地分析SSVEP的谐波分量。复谱图比复杂频谱特征和幅度谱进行更多信息,允许FBCNN-3D超越另一个CNN。在具有挑战性的分类问题中获得的平均测试精度(87.3%)和F1分数(0.877)表示施工,经济,快速和低延迟BCIS建设的强大潜力。
translated by 谷歌翻译
脑电图(EEG)录音通常被伪影污染。已经开发了各种方法来消除或削弱伪影的影响。然而,大多数人都依赖于先前的分析经验。在这里,我们提出了一个深入的学习框架,以将神经信号和伪像在嵌入空间中分离并重建被称为DeepSeparator的去噪信号。 DeepSeparator采用编码器来提取和放大原始EEG中的特征,称为分解器的模块以提取趋势,检测和抑制伪像和解码器以重建去噪信号。此外,DeepSeparator可以提取伪像,这在很大程度上增加了模型解释性。通过半合成的EEG数据集和实际任务相关的EEG数据集进行了所提出的方法,建议DeepSepater在EoG和EMG伪像去除中占据了传统模型。 DeepSeparator可以扩展到多通道EEG和任何长度的数据。它可能激励深入学习的EEG去噪的未来发展和应用。 DeepSeparator的代码可在https://github.com/ncclabsustech/deepseparator上获得。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
苏黎世认知语言处理语料库(Zuco)提供了来自两种读取范例,正常读取和特定任务读数的眼跟踪和脑电图信号。我们分析了机器学习方法是否能够使用眼睛跟踪和EEG功能对这两个任务进行分类。我们使用聚合的句子级别功能以及细粒度的单词级别来实现模型。我们在主题内和交叉对象评估方案中测试模型。所有模型都在Zuco 1.0和Zuco 2.0数据子集上进行测试,其特征在于不同的记录程序,因此允许不同的概括水平。最后,我们提供了一系列的控制实验,以更详细地分析结果。
translated by 谷歌翻译
基于EEG的基于EEG的情感识别(EEG-ER)与消费者级EEG器件涉及使用减少数量的通道进行语调。这些设备通常仅提供四个或五个通道,与通常在最新的最先进的研究中通常使用的大量信道(32或更多)不同。在这项工作中,我们建议使用离散小波变换(DWT)来提取时间频域特征,并且我们使用几秒钟的时间窗口来执行EEG-ER分类。该技术可以实时使用,而不是在HOC上完成完整会话数据。我们还应用了在现有研究中开发的基线拆卸预处理,以我们提出的DWT熵和能量特征,这显着提高了分类精度。我们考虑两个不同的分类器架构,一个3D卷积神经网络(3D CNN)和支持向量机(SVM)。我们在主题和主题依赖设置上评估两个模型,以分类个人情绪状态的价值和唤醒维度。我们在Deap DataSet提供的完整32通道数据上测试它们,以及相同数据集的减少的5通道提取物。 SVM模型在所有呈现的场景上表现最佳,在唤起完整的32通道主题案例的唤醒时,在价值上实现95.32%的精度,95.68%,以前的实时EEG-EEG-EEG-EEG-EEG对象依赖性基准。在独立的案例上,还获得了80.70%的准确度,唤醒的唤醒器中的81.41%。将输入数据减少到5个通道仅在所有场景中平均降低3.54%,这使得该型号适合使用更可访问的低端EEG器件。
translated by 谷歌翻译