由于非平稳性,现实世界多变量时间序列(MTS)的分布会随着时间而变化,称为分布漂移。大多数现有的MT预测模型都会极大地遭受分销漂移的影响,并随着时间的推移降低了预测性能。现有方法通过适应最新到达数据或根据未来数据得出的元知识进行自我纠正来解决分布漂移。尽管在MT的预测中取得了巨大的成功,但这些方法几乎无法捕获固有的分布变化,尤其是从分布的角度来看。因此,我们提出了一个新型的框架时间条件变化自动编码器(TCVAE),以对MTS中历史观察结果和未来数据之间的动态分布依赖性进行建模,并将依赖性作为时间条件分布推断为利用潜在变量。具体而言,新型的颞鹰注意机制代表了随后馈入馈送前网络的时间因素,以估计潜在变量的先前高斯分布。时间因素的表示进一步动态地调整了基于变压器的编码器和解码器的结构,以利用门控注意机制来变化。此外,我们引入条件连续归一化流量,以将先前的高斯转化为复杂且无形式的分布,以促进对时间条件分布的灵活推断。在六个现实世界MTS数据集上进行的广泛实验表明,与最先进的MTS预测基线相比,TCVAE的出色鲁棒性和有效性。我们进一步说明了TCVAE通过多方面的案例研究和现实情况下的可视化来说明TCVAE的适用性。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
交通预测是智能交通系统的问题(ITS),并为个人和公共机构是至关重要的。因此,研究高度重视应对准确预报交通系统的复杂的时空相关性。但是,有两个挑战:1)大多数流量预测研究主要集中在造型相邻传感器的相关性,而忽略远程传感器,例如,商务区有类似的时空模式的相关性; 2)使用静态邻接矩阵中曲线图的卷积网络(GCNs)的现有方法不足以反映在交通系统中的动态空间依赖性。此外,它采用自注意所有的传感器模型动态关联细粒度方法忽略道路网络分层信息,并有二次计算复杂性。在本文中,我们提出了一种新动态多图形卷积递归网络(DMGCRN),以解决上述问题,可以同时距离的空间相关性,结构的空间相关性,和所述时间相关性进行建模。那么,只使用基于距离的曲线图来捕获空间信息从节点是接近距离也构建了一个新潜曲线图,其编码的道路之间的相关性的结构来捕获空间信息从节点在结构上相似。此外,我们在不同的时间将每个传感器的邻居到粗粒区域,并且动态地分配不同的权重的每个区域。同时,我们整合动态多图卷积网络到门控重复单元(GRU)来捕获时间依赖性。三个真实世界的交通数据集大量的实验证明,我们提出的算法优于国家的最先进的基线。
translated by 谷歌翻译
多元时间序列(MTS)预测在广泛的应用中起着至关重要的作用。最近,时空图神经网络(STGNN)已成为越来越流行的MTS预测方法。 STGNN通过图神经网络和顺序模型共同对MTS的空间和时间模式进行建模,从而显着提高了预测准确性。但是受模型复杂性的限制,大多数STGNN仅考虑短期历史MTS数据,例如过去一个小时的数据。但是,需要根据长期的历史MTS数据来分析时间序列的模式及其之间的依赖关系(即时间和空间模式)。为了解决这个问题,我们提出了一个新颖的框架,其中STGNN通过可扩展的时间序列预训练模型(步骤)增强。具体而言,我们设计了一个预训练模型,以从非常长期的历史时间序列(例如,过去两周)中有效地学习时间模式并生成细分级表示。这些表示为短期时间序列输入到STGNN提供了上下文信息,并促进了时间序列之间的建模依赖关系。三个公共现实世界数据集的实验表明,我们的框架能够显着增强下游STGNN,并且我们的训练前模型可恰当地捕获时间模式。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
由于流量大数据的增加,交通预测逐渐引起了研究人员的注意力。因此,如何在交通数据中挖掘复杂的时空相关性以预测交通状况更准确地成为难题。以前的作品组合图形卷积网络(GCNS)和具有深度序列模型的自我关注机制(例如,复发性神经网络),分别捕获时空相关性,忽略时间和空间的关系。此外,GCNS受到过平滑问题的限制,自我关注受到二次问题的限制,导致GCN缺乏全局代表能力,自我注意力效率低下捕获全球空间依赖性。在本文中,我们提出了一种新颖的交通预测深入学习模型,命名为多语境意识的时空关节线性关注(STJLA),其对时空关节图应用线性关注以捕获所有时空之间的全球依赖性节点有效。更具体地,STJLA利用静态结构上下文和动态语义上下文来提高模型性能。基于Node2VEC和单热编码的静态结构上下文丰富了时空位置信息。此外,基于多头扩散卷积网络的动态空间上下文增强了局部空间感知能力,并且基于GRU的动态时间上下文分别稳定了线性关注的序列位置信息。在两个现实世界交通数据集,英格兰和PEMSD7上的实验表明,我们的Stjla可以获得高达9.83%和3.08%,在最先进的基线上的衡量标准的准确性提高。
translated by 谷歌翻译
交通预测在智能交通系统中很重要,有利于交通安全,但由于现实世界交通系统中的复杂和动态的时空依赖性,这是非常具有挑战性的。先前的方法使用预定义或学习的静态图来提取空间相关性。但是,基于静态图形的方法无法挖掘交通网络的演变。研究人员随后为每次切片生成动态图形以反映空间相关性的变化,但它们遵循独立建模的时空依赖性的范例,忽略了串行空间影响。在本文中,我们提出了一种新的基于跨时动态图形的深度学习模型,名为CDGNet,用于交通预测。该模型能够通过利用横行动态图来有效地捕获每个时切片和其历史时片之间的串联空间依赖性。同时,我们设计了稀疏横行动态图的浇注机制,符合现实世界中的稀疏空间相关性。此外,我们提出了一种新颖的编码器解码器架构,用于结合基于交叉时间动态图形的GCN,用于多步行量预测。三个现实世界公共交通数据集的实验结果表明CDGNET优于最先进的基线。我们还提供了一种定性研究来分析我们建筑的有效性。
translated by 谷歌翻译
虽然外源变量对时间序列分析的性能改善有重大影响,但在当前的连续方法中很少考虑这些序列间相关性和时间依赖性。多元时间序列的动力系统可以用复杂的未知偏微分方程(PDE)进行建模,这些方程(PDE)在科学和工程的许多学科中都起着重要作用。在本文中,我们提出了一个任意步骤预测的连续时间模型,以学习多元时间序列中的未知PDE系统,其管理方程是通过自我注意和封闭的复发神经网络参数化的。所提出的模型\下划线{变量及其对目标系列的影响。重要的是,使用特殊设计的正则化指南可以将模型简化为正则化的普通微分方程(ODE)问题,这使得可以触犯的PDE问题以获得数值解决方案,并且可行,以预测目标序列的多个未来值。广泛的实验表明,我们提出的模型可以在强大的基准中实现竞争精度:平均而言,它通过降低RMSE的$ 9.85 \%$和MAE的MAE $ 13.98 \%$的基线表现优于最佳基准,以获得任意步骤预测的MAE $。
translated by 谷歌翻译
时间序列预测是许多应用中的重大问题,例如,金融预测和业务优化。现代数据集可以具有多个相关时间序列,这些时间往往是通过全局(共享)规律和本地(特定)动态生成的。在本文中,我们寻求与DeepdGL的这种预测问题进行解决,这是一种深入预测模型,将动态与全球和局部时间模式脱颖而出。 DeepdGL采用编码器解码器架构,包括两个编码器,分别学习全局和本地时间模式,以及解码器以进行多步预测。具体地,为了模拟复杂的全局模式,引入了矢量量化(VQ)模块,允许全局特征编码器在所有时间序列中学习共享码本。为了模型多样化和异质局部模式,提出了一种由对比多地位编码(CMC)增强的自适应参数生成模块,以为每个单独的时间序列产生本地特征编码器的参数,这使得串联之间的相互信息最大化 - 具体的上下文变量和相应时间序列的长/短期表示。我们对几个现实世界数据集的实验表明DeepdGL优于现有的最先进的模型。
translated by 谷歌翻译
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
对传染病疾病的准确预测是有效控制该地区流行病的关键。大多数现有方法忽略了区域之间的潜在动态依赖性或区域之间的时间依赖性和相互依存关系的重要性。在本文中,我们提出了一个内部和内部嵌入式融合网络(SEFNET),以改善流行病预测性能。 SEFNET由两个平行模块组成,分别是嵌入模块的系列间嵌入模块。在嵌入模块的串间嵌入模块中,提出了一个多尺度的统一卷积组件,称为“区域感知卷积”,该组件与自我发挥作用,以捕获从多个区域获得的时间序列之间捕获动态依赖性。内部嵌入模块使用长期的短期内存来捕获每个时间序列中的时间关系。随后,我们学习了两个嵌入的影响度,并将它们与参数矩阵融合法融合在一起。为了进一步提高鲁棒性,Sefnet还与非线性神经网络并行整合了传统的自回归组件。在四个现实世界流行有关的数据集上进行的实验表明,SEFNET具有有效性,并且表现优于最先进的基线。
translated by 谷歌翻译
我们都取决于流动性,车辆运输会影响我们大多数人的日常生活。因此,预测道路网络中流量状态的能力是一项重要的功能和具有挑战性的任务。流量数据通常是从部署在道路网络中的传感器获得的。关于时空图神经网络的最新建议通过将流量数据建模为扩散过程,在交通数据中建模复杂的时空相关性方面取得了巨大进展。但是,直观地,流量数据包含两种不同类型的隐藏时间序列信号,即扩散信号和固有信号。不幸的是,几乎所有以前的作品都将交通信号完全视为扩散的结果,同时忽略了固有的信号,这会对模型性能产生负面影响。为了提高建模性能,我们提出了一种新型的脱钩时空框架(DSTF),该框架以数据驱动的方式将扩散和固有的交通信息分开,其中包含独特的估计门和残差分解机制。分离的信号随后可以通过扩散和固有模块分别处理。此外,我们提出了DSTF的实例化,分离的动态时空图神经网络(D2STGNN),可捕获时空相关性,还具有动态图学习模块,该模块针对学习流量网络动态特征的学习。使用四个现实世界流量数据集进行的广泛实验表明,该框架能够推进最先进的框架。
translated by 谷歌翻译
时间变化数量的估计是医疗保健和金融等领域决策的基本组成部分。但是,此类估计值的实际实用性受到它们量化预测不确定性的准确程度的限制。在这项工作中,我们解决了估计高维多元时间序列的联合预测分布的问题。我们提出了一种基于变压器体系结构的多功能方法,该方法使用基于注意力的解码器估算关节分布,该解码器可被学会模仿非参数Copulas的性质。最终的模型具有多种理想的属性:它可以扩展到数百个时间序列,支持预测和插值,可以处理不规则和不均匀的采样数据,并且可以在训练过程中无缝地适应丢失的数据。我们从经验上证明了这些属性,并表明我们的模型在多个现实世界数据集上产生了最新的预测。
translated by 谷歌翻译
Accurate traffic flow prediction, a hotspot for intelligent transportation research, is the prerequisite for mastering traffic and making travel plans. The speed of traffic flow can be affected by roads condition, weather, holidays, etc. Furthermore, the sensors to catch the information about traffic flow will be interfered with by environmental factors such as illumination, collection time, occlusion, etc. Therefore, the traffic flow in the practical transportation system is complicated, uncertain, and challenging to predict accurately. This paper proposes a deep encoder-decoder prediction framework based on variational Bayesian inference. A Bayesian neural network is constructed by combining variational inference with gated recurrent units (GRU) and used as the deep neural network unit of the encoder-decoder framework to mine the intrinsic dynamics of traffic flow. Then, the variational inference is introduced into the multi-head attention mechanism to avoid noise-induced deterioration of prediction accuracy. The proposed model achieves superior prediction performance on the Guangzhou urban traffic flow dataset over the benchmarks, particularly when the long-term prediction.
translated by 谷歌翻译
多变量时间序列(MTS)预测在智能应用的自动化和优化中起着重要作用。这是一个具有挑战性的任务,因为我们需要考虑复杂的变量依赖关系和可变间依赖关系。现有的作品仅在单个可变依赖项的帮助下学习时间模式。然而,许多真实世界MTS中有多种时间模式。单个可变间依赖项使模型更倾向于学习一种类型的突出和共享的时间模式。在本文中,我们提出了一个多尺度自适应图形神经网络(MOLDN)来解决上述问题。 MOLDN利用多尺度金字塔网络,以在不同的时间尺度上保留潜在的时间依赖关系。由于可变间依赖关系可以在不同的时间尺度下不同,所以自适应图学习模块被设计为在没有预先定义的前沿的情况下推断规模特定的可变依赖关系。鉴于多尺度特征表示和规模特定的可变间依赖关系,引入了一个多尺度的时间图神经网络,以共同模拟帧内依赖性和可变间依赖性。之后,我们开发一个尺度明智的融合模块,以在不同时间尺度上有效地促进协作,并自动捕获贡献的时间模式的重要性。四个真实数据集的实验表明,Magnn在各种设置上表明了最先进的方法。
translated by 谷歌翻译
流行预测是有效控制流行病的关键,并帮助世界缓解威胁公共卫生的危机。为了更好地了解流行病的传播和演变,我们提出了Epignn,这是一种基于图神经网络的流行病预测模型。具体而言,我们设计了一个传输风险编码模块,以表征区域在流行过程中的局部和全局空间效应,并将其纳入模型。同时,我们开发了一个区域感知的图形学习者(RAGL),该图形将传播风险,地理依赖性和时间信息考虑在内,以更好地探索时空依赖性,并使地区意识到相关地区的流行状况。 RAGL还可以与外部资源(例如人类流动性)相结合,以进一步提高预测性能。对五个现实世界流行有关的数据集(包括流感和Covid-19)进行的全面实验证明了我们提出的方法的有效性,并表明Epignn在RMSE中优于最先进的基线。
translated by 谷歌翻译
在各种下游机器学习任务中,多元时间序列的可靠和有效表示至关重要。在多元时间序列预测中,每个变量都取决于其历史值,并且变量之间也存在相互依存关系。必须设计模型以捕获时间序列之间的内部和相互关系。为了朝着这一目标迈进,我们提出了时间序列注意变压器(TSAT),以进行多元时间序列表示学习。使用TSAT,我们以边缘增强动态图来表示多元时间序列的时间信息和相互依赖性。在动态图中的节点表示,串行中的相关性表示。修改了一种自我注意力的机制,以使用超经验模式分解(SMD)模块捕获序列间的相关性。我们将嵌入式动态图应用于时代序列预测问题,包括两个现实世界数据集和两个基准数据集。广泛的实验表明,TSAT显然在各种预测范围内使用六种最先进的基线方法。我们进一步可视化嵌入式动态图,以说明TSAT的图形表示功能。我们在https://github.com/radiantresearch/tsat上共享代码。
translated by 谷歌翻译
最近,对于长期时间序列预测(LTSF)任务,基于变压器的解决方案激增。尽管过去几年的表现正在增长,但我们质疑这项研究中这一研究的有效性。具体而言,可以说,变形金刚是最成功的解决方案,是在长序列中提取元素之间的语义相关性。但是,在时间序列建模中,我们要在一组连续点的有序集中提取时间关系。在采用位置编码和使用令牌将子系列嵌入变压器中的同时,有助于保留某些订购信息,但\ emph {置换不变}的自我注意力专注机制的性质不可避免地会导致时间信息损失。为了验证我们的主张,我们介绍了一组名为LTSF线性的令人尴尬的简单单层线性模型,以进行比较。在九个现实生活数据集上的实验结果表明,LTSF线性在所有情况下都超过现有的基于变压器的LTSF模型,并且通常要大幅度较大。此外,我们进行了全面的经验研究,以探索LTSF模型各种设计元素对其时间关系提取能力的影响。我们希望这一令人惊讶的发现为LTSF任务打开了新的研究方向。我们还主张重新审视基于变压器解决方案对其他时间序列分析任务(例如,异常检测)的有效性。代码可在:\ url {https://github.com/cure-lab/ltsf-linear}中获得。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译