利用机器学习来促进优化过程是一个新兴领域,该领域有望绕过经典迭代求解器在需要接近实时优化的关键应用中引起的基本计算瓶颈。现有的大多数方法都集中在学习数据驱动的优化器上,这些优化器可在解决优化方面更少迭代。在本文中,我们采用了不同的方法,并建议将迭代求解器完全替换为可训练的参数集功能,该功能在单个feed向前输出优化问题的最佳参数/参数。我们将我们的方法表示为学习优化优化过程(循环)。我们显示了学习此类参数功能的可行性,以解决各种经典优化问题,包括线性/非线性回归,主成分分析,基于运输的核心和二次编程在供应管理应用程序中。此外,我们提出了两种学习此类参数函数的替代方法,在循环中有和没有求解器。最后,通过各种数值实验,我们表明训练有素的求解器的数量级可能比经典的迭代求解器快,同时提供了接近最佳的解决方案。
translated by 谷歌翻译
Global pooling is one of the most significant operations in many machine learning models and tasks, which works for information fusion and structured data (like sets and graphs) representation. However, without solid mathematical fundamentals, its practical implementations often depend on empirical mechanisms and thus lead to sub-optimal, even unsatisfactory performance. In this work, we develop a novel and generalized global pooling framework through the lens of optimal transport. The proposed framework is interpretable from the perspective of expectation-maximization. Essentially, it aims at learning an optimal transport across sample indices and feature dimensions, making the corresponding pooling operation maximize the conditional expectation of input data. We demonstrate that most existing pooling methods are equivalent to solving a regularized optimal transport (ROT) problem with different specializations, and more sophisticated pooling operations can be implemented by hierarchically solving multiple ROT problems. Making the parameters of the ROT problem learnable, we develop a family of regularized optimal transport pooling (ROTP) layers. We implement the ROTP layers as a new kind of deep implicit layer. Their model architectures correspond to different optimization algorithms. We test our ROTP layers in several representative set-level machine learning scenarios, including multi-instance learning (MIL), graph classification, graph set representation, and image classification. Experimental results show that applying our ROTP layers can reduce the difficulty of the design and selection of global pooling -- our ROTP layers may either imitate some existing global pooling methods or lead to some new pooling layers fitting data better. The code is available at \url{https://github.com/SDS-Lab/ROT-Pooling}.
translated by 谷歌翻译
在各种机器学习问题中,包括转移,多任务,连续和元学习在内,衡量不同任务之间的相似性至关重要。最新的测量任务相似性的方法依赖于体系结构:1)依靠预训练的模型,或2)在任务上进行培训网络,并将正向转移用作任务相似性的代理。在本文中,我们利用了最佳运输理论,并定义了一个新颖的任务嵌入监督分类,该分类是模型的,无训练的,并且能够处理(部分)脱节标签集。简而言之,给定带有地面标签的数据集,我们通过多维缩放和串联数据集样品进行嵌入标签,并具有相应的标签嵌入。然后,我们将两个数据集之间的距离定义为其更新样品之间的2-Wasserstein距离。最后,我们利用2-wasserstein嵌入框架将任务嵌入到矢量空间中,在该空间中,嵌入点之间的欧几里得距离近似于任务之间提出的2-wasserstein距离。我们表明,与最佳传输数据集距离(OTDD)等相关方法相比,所提出的嵌入导致任务的比较显着更快。此外,我们通过各种数值实验证明了我们提出的嵌入的有效性,并显示了我们所提出的距离与任务之间的前进和向后转移之间的统计学意义相关性。
translated by 谷歌翻译
本文研究了如何训练直接近似约束优化问题的最佳解决方案的机器学习模型。这是在约束下的经验风险最小化,这是具有挑战性的,因为培训必须平衡最佳和可行性条件。监督学习方法通​​常通过在大量预处理实例中训练模型来应对这一挑战。本文采用了不同的途径,并提出了原始偶尔学习的想法(PDL),这是一种自我监督的培训方法,不需要一组预处理的实例或用于培训和推理的优化求解器。取而代之的是,PDL模拟了增强拉格朗日方法(ALM)的轨迹,并共同训练原始和双神经网络。作为一种原始的双重方法,PDL使用用于训练原始网络的损失函数中的约束项的实例特定惩罚。实验表明,在一组非线性优化基准上,PDL通常表现出可忽略的约束违规和较小的最佳差距,并且非常接近ALM优化。与现有方法相比,PDL在最佳差距,约束违规和培训时间方面还表现出改善或类似的性能。
translated by 谷歌翻译
我们研究了摊销优化的使用来预测输入度量的最佳运输(OT)图,我们称之为元。通过利用过去问题的知识和信息来快速预测和解决新问题,这有助于反复解决不同措施之间的类似OT问题。否则,标准方法忽略了过去解决方案的知识,并从头开始重新解决每个问题。元模型在离散设置中超过了log-sinkhorn求解器的标准收敛速率,并在连续设置中凸电势。我们通过在图像,球形数据和调色板之间的离散和连续传输设置中多个数量级来改善标准ot求解器的计算时间。我们的源代码可在http://github.com/facebookresearch/meta-ot上找到。
translated by 谷歌翻译
Wasserstein BaryCenter是一种原理的方法来表示给定的一组概率分布的加权平均值,利用由最佳运输所引起的几何形状。在这项工作中,我们提出了一种新颖的可扩展算法,以近似于旨在在机器学习中的高维应用的Wassersein重构。我们所提出的算法基于Wassersein-2距离的Kantorovich双重制定以及最近的神经网络架构,输入凸神经网络,其已知参数化凸函数。我们方法的显着特征是:i)仅需要来自边缘分布的样本; ii)与现有方法不同,它代表了具有生成模型的重心,因此可以在不查询边际分布的情况下从重心产生无限样品; III)它与一个边际案例中的生成对抗性模型类似。我们通过在多个实验中将其与最先进的方法进行比较来证明我们的算法的功效。
translated by 谷歌翻译
在确定性优化中,通常假定问题的所有参数都是固定和已知的。但是,实际上,某些参数可能是未知的先验参数,但可以从历史数据中估算。典型的预测 - 优化方法将预测和优化分为两个阶段。最近,端到端的预测到优化已成为有吸引力的替代方法。在这项工作中,我们介绍了PYEPO软件包,这是一个基于Pytorch的端到端预测,然后在Python中进行了优化的库。据我们所知,PYEPO(发音为“带有静音” n“”的“菠萝”)是线性和整数编程的第一个通用工具,具有预测的目标函数系数。它提供了两种基本算法:第一种基于Elmachtoub&Grigas(2021)的开创性工作的凸替代损失函数,第二个基于Vlastelica等人的可区分黑盒求解器方法。 (2019)。 PYEPO提供了一个简单的接口,用于定义新的优化问题,最先进的预测 - 优化训练算法,自定义神经网络体系结构的使用以及端到端方法与端到端方法与与端到端方法的比较两阶段的方法。 PYEPO使我们能够进行一系列全面的实验,以比较沿轴上的多种端到端和两阶段方法,例如预测准确性,决策质量和运行时间,例如最短路径,多个背包和旅行等问题销售人员问题。我们讨论了这些实验中的一些经验见解,这些见解可以指导未来的研究。 PYEPO及其文档可在https://github.com/khalil-research/pyepo上找到。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
在用于图形结构数据的几台机器学习任务中,所考虑的图形可以由不同数量的节点组成。因此,需要设计汇集方法,该方法将不同大小的图形表示聚合到固定大小的表示,其可以用于下游任务,例如图形分类。现有的图形池池方法没有关于图形表示的相似性和其汇总版的保证。在这项工作中,我们通过提出流池来解决这些限制,通过最小化其Wassersein距离,通过最佳地将图形表示的统计数据统计到其汇集的对应物。这是通过对汇集的图形表示来执行Wasserstein梯度流来实现的。我们提出了我们的方法,可以通过任何基础成本考虑表示空间的几何形状。该实施依赖于与最近提出的隐式差异化方案的Wasserstein距离的计算。我们的汇集方法可用于自动分化,可以集成在端到端的深度学习架构中。此外,流量池是不变的,因此可以与GNN中的置换设备提取层组合,以便获得与节点的排序无关的预测。实验结果表明,与现有在图形分类任务中的现有汇集方法相比,我们的方法导致性能增加。
translated by 谷歌翻译
本文介绍了OptNet,该网络架构集成了优化问题(这里,专门以二次程序的形式),作为较大端到端可训练的深网络中的单个层。这些层在隐藏状态之间编码约束和复杂依赖性,传统的卷积和完全连接的层通常无法捕获。我们探索这种架构的基础:我们展示了如何使用敏感性分析,彼得优化和隐式差分的技术如何通过这些层和相对于层参数精确地区分;我们为这些层开发了一种高效的解算器,用于利用基于GPU的基于GPU的批处理在原始 - 双内部点法中解决,并且在求解的顶部几乎没有额外的成本提供了反向衰减梯度;我们突出了这些方法在几个问题中的应用。在一个值得注意的示例中,该方法学习仅在输入和输出游戏中播放Mini-sudoku(4x4),没有关于游戏规则的a-priori信息;这突出了OptNet比其他神经架构更好地学习硬限制的能力。
translated by 谷歌翻译
从集合结构的数据学习是一种基本上在机器学习和计算机视觉中的应用程序的重要问题。本文侧重于使用近似最近邻(ANN)解决方案,特别是地区敏感的散列来源的非参数和数据独立于无关的学习。我们考虑从输入集查询设置检索的问题。这样的检索问题需要:1)一种有效的机制来计算集合和2)的距离/异化,以及快速最近邻南搜索的适当数据结构。为此,我们提出切片 - Wasserstein将嵌入作为计算上高效的“Set-2-向量”机制,使下游ANN能够具有理论担保。该组元素被视为来自未知底层分布的样本,并且切片 - Wasserstein距离用于比较集合。我们展示了算法的有效性,表示在各种集合检索数据集上的设定局部敏感散列(Slosh),并将我们提出的嵌入方法与标准集嵌入方法进行比较,包括泛化均值(Gem)嵌入/池,具有额定排序池(FSpool )和协方差汇总并显示出检索结果的一致性。用于复制我们的结果的代码可在此处提供:\ href {https://github.com/mint-vu/slosh} {https://github.com/mint-vu/slosh}。
translated by 谷歌翻译
通过边界估计可以显着简化求解约束优化问题(COP),即提供成本函数的紧密边界。通过使用由已知边界的数据组成的数据以及COMPS提取的特征来馈送监督机器学习(ML)模型,可以训练模型以估计新COP实例的边界。在本文中,我们首先概述了来自问题实例的约束编程(CP)的ML的现有知识体系。其次,我们介绍了应用于支持CP解算器的工具的边界估计框架。在该框架内,讨论并评估了不同的ML模型,并评估其对边界估计的适用性,并避免避免求解器找到最佳解决方案的不可行估计的对策。第三,我们在七个警察中提出了一种实验研究,与不同的CP溶剂。我们的结果表明,可以仅限于这些警察的近似最佳边界。这些估计的边界将客观域大小减少60-88%,可以帮助求解器在搜索期间提前找到近乎最佳解决方案。
translated by 谷歌翻译
由于固有的DNN预测误差,确保解决方案可行性是开发用于解决受约束优化问题的深度神经网络(DNN)方案的关键挑战。在本文中,我们提出了一种“预防性学习”的框架,以系统地保证DNN解决方案可行性的凸起约束和一般客观函数的问题。我们首先应用预测和重建设计,不仅保证平等约束,还可以利用它们来减少DNN预测的变量的数量。然后,作为关键方法贡献,我们系统地校准了DNN训练中使用的不等式约束,从而预测预测误差并确保所得到的解决方案仍然可行。我们表征校准量大和DNN尺寸,足以确保通用可行性。我们提出了一种新的敌对样本意识到培训算法,以改善DNN的最优性能而不牺牲可行性保证。总的来说,该框架提供了两个DNN。表征足够的DNN大小的第一个可以保证通用可行性,而来自所提出的培训算法的另一个进一步提高了最优性并同时保持DNN的通用可行性。我们应用预防性学习框架来开发Deepopf +,以解决网格运行中的基本DC最佳功率流量问题。它在确保在轻负载和重载制度中的可行性和获得一致的理想加速性能时,它可以改善现有的基于DNN的方案。仿真结果对IEEE案例-30 / 118/300测试用例显示DeepoPF +与最优性损失的最优损失和最高幅度计算加速度为100 \%$ 0.5%的可行解决方案,相比之下艺术迭代求解器。
translated by 谷歌翻译
Decision-making problems are commonly formulated as optimization problems, which are then solved to make optimal decisions. In this work, we consider the inverse problem where we use prior decision data to uncover the underlying decision-making process in the form of a mathematical optimization model. This statistical learning problem is referred to as data-driven inverse optimization. We focus on problems where the underlying decision-making process is modeled as a convex optimization problem whose parameters are unknown. We formulate the inverse optimization problem as a bilevel program and propose an efficient block coordinate descent-based algorithm to solve large problem instances. Numerical experiments on synthetic datasets demonstrate the computational advantage of our method compared to standard commercial solvers. Moreover, the real-world utility of the proposed approach is highlighted through two realistic case studies in which we consider estimating risk preferences and learning local constraint parameters of agents in a multiplayer Nash bargaining game.
translated by 谷歌翻译
可再生能源世代的高百分比渗透对电力系统引起了重大不确定性。它要求网格操作员更频繁地解决替代电流最佳功率流(AC-OPF)问题,以便在传输和分配网格中进行经济和可靠的操作。在本文中,我们开发了一种Deep神经网络(DNN)方法,称为DEEPOPF,用于在传统求解器使用的时间中解决AC-OPF问题。应用机器学习技术解决AC-OPF问题的关键困难在于确保获得的解决方案尊重平等和不平等的物理和操作约束。在[1],[2]中概括了2阶段的过程,DEEPOPF首先训练DNN模型,以预测一组独立的操作变量,然后通过求解功率流方程直接计算剩余的可靠性变量。这种方法不仅保留了平衡平等的限制,而且还减少了DNN预测的变量数量,从而减少了所需的神经元和训练数据的数量。然后,DeePOPF在培训过程中采用零级梯度估计技术采用惩罚方法,以保留其余的不平等约束。作为另一个贡献,我们根据所需的近似精度来驱动调整DNN的大小的条件,该准确性测量了DNN的概括能力。它为使用DNN解决AC-OPF问题提供了理论上的理由。 IEEE 30/118/300-BU和合成2000总线测试用例的仿真结果表明,与最先进的求解器相比,DEEPOPF最多将计算时间速度高达两个数量级,费用为费用$ <$ <$ 0.1%的成本差异。
translated by 谷歌翻译
Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. 1 We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.
translated by 谷歌翻译
随机双动态编程(SDDP)是一种用于解决多级随机优化的最新方法,广泛用于建模现实世界流程优化任务。不幸的是,SDDP具有最糟糕的复杂性,其在决策变量的数量中呈指数级级别,这严重限制了仅限于低维度问题的适用性。为了克服这一限制,我们通过引入培训神经模型来扩展SDDP,该培训神经模型将在内部低维空间内将问题实例映射到内在的低维空间内的分型线性值函数,该尺寸低维空间是专门用于与基础SDDP求解器进行交互的架构成型,因此可以在新实例上加速优化性能。通过解决连续问题,提出的神经随机双动态编程($ \ nu $ -sddp)不断自我提高。实证调查表明,$ \ nu $ -sddp可以显着降低解决问题的问题,而不会在一系列合成和实际过程优化问题上牺牲竞争对手的解决方案质量。
translated by 谷歌翻译
近年来,深度学习在图像重建方面取得了显着的经验成功。这已经促进了对关键用例中数据驱动方法的正确性和可靠性的精确表征的持续追求,例如在医学成像中。尽管基于深度学习的方法具有出色的性能和功效,但对其稳定性或缺乏稳定性的关注以及严重的实际含义。近年来,已经取得了重大进展,以揭示数据驱动的图像恢复方法的内部运作,从而挑战了其广泛认为的黑盒本质。在本文中,我们将为数据驱动的图像重建指定相关的融合概念,该概念将构成具有数学上严格重建保证的学习方法调查的基础。强调的一个例子是ICNN的作用,提供了将深度学习的力量与经典凸正则化理论相结合的可能性,用于设计被证明是融合的方法。这篇调查文章旨在通过提供对数据驱动的图像重建方法以及从业人员的理解,旨在通过提供可访问的融合概念的描述,并通过将一些现有的经验实践放在可靠的数学上,来推进我们对数据驱动图像重建方法的理解以及从业人员的了解。基础。
translated by 谷歌翻译