尽管脑肿瘤分割的准确性最近有所提高,但结果仍然表现出较低的置信度和稳健性。不确定性估计是改变这种情况的一种有效方法,因为它提供了对分割结果的信心。在本文中,我们提出了一个可信赖的脑肿瘤分割网络,该网络可以产生可靠的分割结果和可靠的不确定性估计,而不会过多的计算负担和骨干网络的修改。在我们的方法中,不确定性是使用主观逻辑理论明确建模的,该理论将主干神经网络的预测视为主观观点,通过将分割的类概率参数视为差异分布。同时,可信赖的分割框架学习了从功能中收集可靠证据的功能,从而导致最终分割结果。总体而言,我们统一的可信赖分割框架使该模型具有可靠性和鲁棒性,对分布式样本。为了评估我们的模型在鲁棒性和可靠性方面的有效性,在Brats 2019数据集中进行了定性和定量实验。
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
尽管脑肿瘤分割的准确性最近取得了进步,但结果仍然遭受低可靠性和鲁棒性的影响。不确定性估计是解决此问题的有效解决方案,因为它提供了对分割结果的信心。当前的不确定性估计方法基于分位数回归,贝叶斯神经网络,集合和蒙特卡洛辍学者受其高计算成本和不一致的限制。为了克服这些挑战,在最近的工作中开发了证据深度学习(EDL),但主要用于自然图像分类。在本文中,我们提出了一个基于区域的EDL分割框架,该框架可以生成可靠的不确定性图和可靠的分割结果。我们使用证据理论将神经网络的输出解释为从输入特征收集的证据价值。遵循主观逻辑,将证据作为差异分布进行了参数化,预测的概率被视为主观意见。为了评估我们在分割和不确定性估计的模型的性能,我们在Brats 2020数据集上进行了定量和定性实验。结果证明了所提出的方法在量化分割不确定性和稳健分割肿瘤方面的最高性能。此外,我们提出的新框架保持了低计算成本和易于实施的优势,并显示了临床应用的潜力。
translated by 谷歌翻译
由于信息源通常不完美,因此有必要考虑其在多源信息融合任务中的可靠性。在本文中,我们提出了一个新的深层框架,使我们能够使用Dempster-Shafer理论的形式合并多MR图像分割结果,同时考虑到相对于不同类别的不同模式的可靠性。该框架由编码器折线功能提取模块组成,该模块是每个模态在每个体素上计算信念函数的证据分割模块,以及多模式的证据融合模块,该模块为每个模态证据和每个模态证据和折现率分配使用Dempster规则结合折扣证据。整个框架是通过根据折扣骰子指数最小化新的损失功能来培训的,以提高细分精度和可靠性。该方法在1251例脑肿瘤患者的Brats 2021数据库中进行了评估。定量和定性的结果表明,我们的方法表现优于最新技术,并实现了在深神经网络中合并多信息的有效新想法。
translated by 谷歌翻译
Focusing on the complicated pathological features, such as blurred boundaries, severe scale differences between symptoms, background noise interference, etc., in the task of retinal edema lesions joint segmentation from OCT images and enabling the segmentation results more reliable. In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network, which can provide accurate segmentation results with reliability assessment. Specifically, aiming at improving the model's ability to learn the complex pathological features of retinal edema lesions in OCT images, we develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module of our newly designed. Meanwhile, to make the segmentation results more reliable, a novel uncertainty segmentation head based on the subjective logical evidential theory is introduced to generate the final segmentation results with a corresponding overall uncertainty evaluation score map. We conduct comprehensive experiments on the public database of AI-Challenge 2018 for retinal edema lesions segmentation, and the results show that our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches. The code will be released on: https://github.com/LooKing9218/ReliableRESeg.
translated by 谷歌翻译
本文提出了基于对脑肿瘤细分任务的普遍学习培训方法。在这一概念中,3D分割网络从双互惠对抗性学习方法学习。为了增强分割预测的概括并使分割网络稳健,我们通过在原始患者数据上添加一些噪声来通过增加一些噪声来遵循虚拟的对抗训练方法。通过将其作为定量主观裁判的评论者纳入了批评,分割网络从与分段结果相关的不确定性信息学习。我们在RSNA-ASNR-MICCAI BRATS 2021数据集上培训和评估网络架构。我们在线验证数据集的表现如下:骰子相似度得分为81.38%,90.77%和85.39%; Hausdorff距离(95±95±95毫米)分别为增强肿瘤,全肿瘤和肿瘤核心的5.37毫米,8.56毫米。同样,我们的方法实现了84.55%,90.46%和85.30%的骰子相似度得分,以及最终测试数据集上的13.48 mm,6.32毫米和16.98mm的Hausdorff距离(95 \%)。总体而言,我们所提出的方法对每个肿瘤次区域的分割准确性产生更好的性能。我们的代码实现在https://github.com/himashi92/vizviva_brats_2021上公开使用
translated by 谷歌翻译
The investigation of uncertainty is of major importance in risk-critical applications, such as medical image segmentation. Belief function theory, a formal framework for uncertainty analysis and multiple evidence fusion, has made significant contributions to medical image segmentation, especially since the development of deep learning. In this paper, we provide an introduction to the topic of medical image segmentation methods using belief function theory. We classify the methods according to the fusion step and explain how information with uncertainty or imprecision is modeled and fused with belief function theory. In addition, we discuss the challenges and limitations of present belief function-based medical image segmentation and propose orientations for future research. Future research could investigate both belief function theory and deep learning to achieve more promising and reliable segmentation results.
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
提出了一种基于Dempster-Shafer理论和深度学习的自动证据分割方法,以从三维正电子发射断层扫描(PET)和计算机断层扫描(CT)图像中分割淋巴瘤。该体系结构由深度功能萃取模块和证据层组成。功能提取模块使用编码器框架框架从3D输入中提取语义特征向量。然后,证据层在特征空间中使用原型来计算每个体素的信念函数,以量化有关该位置存在或不存在淋巴瘤的不确定性。基于使用距离的不同方式,比较了两个证据层,以计算质量函数。通过最大程度地减少骰子损失函数,对整个模型进行了训练。表明,深度提取和证据分割的建议组合表现出优于基线UNET模型以及173名患者的数据集中的其他三个最先进的模型。
translated by 谷歌翻译
Glioblastomas是最具侵略性的快速生长的主要脑癌,起源于大脑的胶质细胞。准确鉴定恶性脑肿瘤及其子区域仍然是医学图像分割中最具挑战性问题之一。脑肿瘤分割挑战(Brats)是自动脑胶质细胞瘤分割算法的流行基准,自于其启动。在今年的挑战中,Brats 2021提供了2,000名术前患者的最大多参数(MPMRI)数据集。在本文中,我们提出了两个深度学习框架的新聚合,即在术前MPMRI中的自动胶质母细胞瘤识别的Deepseg和NNU-Net。我们的集合方法获得了92.00,87.33和84.10和Hausdorff距离为3.81,8.91和16.02的骰子相似度分数,用于增强肿瘤,肿瘤核心和全肿瘤区域,单独进行。这些实验结果提供了证据表明它可以在临床上容易地应用,从而助攻脑癌预后,治疗计划和治疗反应监测。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
现代深层神经网络在医学图像分割任务中取得了显着进展。然而,最近观察到他们倾向于产生过于自信的估计,即使在高度不确定性的情况下,导致校准差和不可靠的模型。在这项工作中,我们介绍了错误的预测(MEEP)的最大熵,分割网络的培训策略,这些网络选择性地惩罚过度自信预测,仅关注错误分类的像素。特别是,我们设计了一个正规化术语,鼓励出于错误的预测,增加了复杂场景中的网络不确定性。我们的方法对于神经结构不可知,不会提高模型复杂性,并且可以与多分割损耗功能耦合。我们在两个具有挑战性的医学图像分割任务中将拟议的策略基准:脑磁共振图像(MRI)中的白质超强度病变,心脏MRI中的心房分段。实验结果表明,具有标准分割损耗的耦合MEEP不仅可以改善模型校准,而且还导致分割质量。
translated by 谷歌翻译
对于3D医学图像(例如CT和MRI)分割,在临床情况下分割每个切片的难度差异很大。先前以逐片方式进行体积医学图像分割的研究通常使用相同的2D深神经网络来细分同一情况的所有切片,从而忽略了图像切片之间的数据异质性。在本文中,我们专注于多模式3D MRI脑肿瘤分割,并根据自适应模型选择提出了一个名为MED-DANET的动态体系结构网络,以实现有效的准确性和效率折衷。对于输入3D MRI量的每个切片,我们提出的方法学习了决策网络的特定于切片的决策,以动态从预定义的模型库中选择合适的模型,以完成后续的2D分割任务。 Brats 2019和2020年数据集的广泛实验结果表明,我们提出的方法比以前的3D MRI脑肿瘤分割的最先进方法获得了可比或更好的结果,模型的复杂性要少得多。与最新的3D方法TransBT相比,提出的框架提高了模型效率高达3.5倍,而无需牺牲准确性。我们的代码将很快公开可用。
translated by 谷歌翻译
现有的多视图分类算法专注于通过利用不同的视图来促进准确性,通常将它们集成到常见的随访任务中。尽管有效,但至关重要的是要确保多视图集成和最终决定的可靠性,尤其是对于嘈杂,腐败和分发数据的可靠性。动态评估不同样本的每种观点的可信度可以提供可靠的集成。这可以通过不确定性估计来实现。考虑到这一点,我们提出了一种新颖的多视图分类算法,称为受信任的多视图分类(TMC),通过在证据级别上动态整合不同的观点,为多视图学习提供了新的范式。提出的TMC可以通过考虑每种观点的证据来促进分类可靠性。具体而言,我们介绍了变异性差异来表征类概率的分布,该分布与不同观点的证据进行了参数,并与Dempster-Shafer理论集成在一起。统一的学习框架会引起准确的不确定性,因此,该模型具有可靠性和鲁棒性,以抵抗可能的噪音或腐败。理论和实验结果都证明了所提出的模型在准确性,鲁棒性和可信度方面的有效性。
translated by 谷歌翻译
在多模式分割领域中,可以考虑不同方式之间的相关性以改善分段结果。考虑到不同MR模型之间的相关性,在本文中,我们提出了一种由新型三关注融合引导的多模态分段网络。我们的网络包括与N个图像源,三关注融合块,双关注融合块和解码路径的N个独立于模型编码路径。独立编码路径的模型可以从n个模式捕获模态特征。考虑到从编码器中提取的所有功能都非常有用,我们建议使用基于双重的融合来重量沿模态和空间路径的特征,可以抑制更少的信息特征,并强调每个模态的有用的功能在不同的位置。由于不同模式之间存在强烈的相关性,基于双重关注融合块,我们提出了一种相关注意模块来形成三关注融合块。在相关性注意模块中,首先使用相关描述块来学习模态之间的相关性,然后基于相关性的约束来指导网络以学习对分段更相关的潜在相关特征。最后,通过解码器投影所获得的融合特征表示以获得分段结果。我们对Brats 2018年脑肿瘤分割进行测试的实验结果证明了我们提出的方法的有效性。
translated by 谷歌翻译
多模式学习通过在预测过程中同样组合多个输入数据模式来重点关注培训模型。但是,这种相等的组合可能不利于预测准确性,因为不同的方式通常伴随着不同水平的不确定性。通过几种方法研究了使用这种不确定性来组合模式,但是成功有限,因为这些方法旨在处理特定的分类或细分问题,并且不能轻易地转化为其他任务,或者遭受数值的不稳定性。在本文中,我们提出了一种新的不确定性多模式学习者,该学习者通过通过跨模式随机网络预测(CRNP)测量特征密度来估计不确定性。 CRNP旨在几乎不需要适应来在不同的预测任务之间转换,同时进行稳定的培训过程。从技术角度来看,CRNP是探索随机网络预测以估算不确定性并结合多模式数据的第一种方法。对两个3D多模式医学图像分割任务和三个2D多模式计算机视觉分类任务的实验显示了CRNP的有效性,适应性和鲁棒性。此外,我们提供了有关不同融合功能和可视化的广泛讨论,以验证提出的模型。
translated by 谷歌翻译
来自多个磁共振成像(MRI)方式的脑肿瘤分割是医学图像计算中的具有挑战性的任务。主要挑战在于各种扫描仪和成像协议的普遍性。在本文中,我们探讨了在不增加推理时间的情况下增加模型稳健性的策略。为此目的,我们探索使用不同损失,优化仪和培训验证数据拆分培训的型号的强大合奏。重要的是,我们探讨了U-Net架构的瓶颈中的变压器。虽然我们在瓶颈中发现变压器比平均基线U-Net更差,但是广义的Wasserstein骰子损失一致地产生优异的结果。此外,我们采用了高效的测试时间增强策略,以实现更快和强大的推论。我们的最终集合具有测试时间增强的七个3D U-Nets的平均骰子得分为89.4%,平均HAUSDORFF 95%距离10.0 mm在Brats 2021测试数据集时。我们的代码和培训的型号在https://github.com/lucasfidon/trabit_brats2021上公开提供。
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
鉴于其精确,效率和客观性,深入学习(DL)在重塑医疗保健系统方面具有很大的承诺。然而,DL模型到嘈杂和分发输入的脆性是在诊所的部署中的疾病。大多数系统产生点估计,无需进一步了解模型不确定性或信心。本文介绍了一个新的贝叶斯深度学习框架,用于分割神经网络中的不确定量化,特别是编码器解码器架构。所提出的框架使用一阶泰勒级近似传播,并学习模型参数分布的前两个矩(均值和协方差,通过最大化培训数据来最大限度地提高界限。输出包括两个地图:分段图像和分段的不确定性地图。细分决定中的不确定性被预测分配的协方差矩阵捕获。我们评估了从磁共振成像和计算机断层扫描的医学图像分割数据上提出的框架。我们在多个基准数据集上的实验表明,与最先进的分割模型相比,所提出的框架对噪声和对抗性攻击更加稳健。此外,所提出的框架的不确定性地图将低置信度(或等效高不确定性)与噪声,伪像或对抗攻击损坏的测试输入图像中的贴片。因此,当通过在不确定性地图中呈现更高的值,该模型可以自评测出现错误预测或错过分割结构的一部分,例如肿瘤。
translated by 谷歌翻译